Skip to main content

Advertisement

Log in

Allometric relationships and reforestation guidelines for Maclura tinctoria, an important multi-purpose timber tree of Latin America

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

As reforestation and restoration processes gain momentum across the world native tree species are being established for production, conservation and restoration purposes in agricultural landscapes. One such tree with promise is dinde [Maclura tinctoria (L.) D. Don ex Steud]; a multi-purpose, Neotropical tree species that is being widely introduced on to farms of the coffee axis region in the Latin American Andes. No formal studies have been made that examine its potential for reforestation. In this study we aim to measure and define the relationships between age, bole size (dbh), tree height, and crown size of planted dinde trees for the development of spacing guidelines at time of planting and for thinning. We also sought to identify whether tree growth is influenced by various measures of soil fertility. We studied these relationships on dinde trees planted at twelve farms in the central Andean foothills of Colombia. Our results are the first to show dinde has comparable growth to other native and exotic trees used for reforestation in Latin America. Strong relationships exist for tree age and diameter at breast height (DBH) with crown size and height. Based on these relationships we developed spacing and thinning guidelines for timber production in plantation and silvo-pastoral circumstances. Soils were generally fertile but varied between farms. Growth varied with soil primarily related to pH and calcium, and secondly to soil nitrogen and organic matter. Our results provide preliminary information for the forester and/or the farmer on expected growth and size relationships for given ages in relation to soil fertility for planted trees. As more trees are planted on a wider array of soils and providing a greater diversity of ages further studies are necessary for refining guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alavalapati JRR, Shrestha RK, Stainback GA, Matta JR (2004) Agroforestry development: an environmental economic perspective. Agrofor Syst 61:299–310

    Google Scholar 

  • Alvarado A, Fallas JL (2004) La saturación de acidez y el encalado sobre el crecimiento de la teca (Tectona grandis l.f.) en suelos ácidos de Costa Rica. Agronomía Costarricense [en linea] Disponible en. http://www.redalyc.org/articulo.oa?id=43628108. ISSN 0377-9424

  • Ashton MS, Kelty MJ (2017) The practice of silviculture: applied forest ecology, 10th edn. Wiley, New York, p 840

    Google Scholar 

  • Ashton PMS, Lowe JS, Larson BC (1989) Thinning and spacing guidelines for Blue Mahoe (Hibiscus elatus SW.). J Trop For Sci 2:37–47

    Google Scholar 

  • Bailey R (1980) The potential of Weibull-type functions as flexible growth curves: discussion. Can J For Res 10:117–118

    Article  Google Scholar 

  • Bare MC, Ashton MS (2016) Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For 47:333–355

    Article  Google Scholar 

  • Berlyn GP (1962) Some size and shape relationships between tree stems and crowns. Iowa State J Sci 37:7–15

    Google Scholar 

  • Betancourt A (1987) Capítulo XVIII: Maclura tinctoria (L.) D. Don ex Steud. In: Betancourt A (ed) Silvicultura especial de árboles maderables tropicales. Editorial Científico-Técnica. Ministerio de Cultura. Ciudad de la Habana, Cuba

  • Bourdy G, Oporto P, Gimenez A, Deharo E (2004) A search for natural bioactive compounds in Bolivia through a multidisciplinary approach part VI. Evaluation of the antimalarial activity of plants used by Isoceño-Guaraní Indians. J Ethnopharmacol 93:269–277

    Article  CAS  PubMed  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agronomy J 54:464–465

    Article  Google Scholar 

  • Brandt R, Zimmermann H, Hensen I, Mariscal Castro JC, Rist S (2012) Agroforestry species of the Bolivian Andes: an integrated assessment of ecological, economic and socio-cultural plant values. Agrofor Syst 86:1–16

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forestry inventory data. For Sci 35:881–902

    Google Scholar 

  • Bullock SH (2000) Developmental patterns of tree dimensions in a neotropical deciduous forest. Biotropica 32:42–52

    Article  Google Scholar 

  • Buol S, Hole F, MacCracken R (1980) Soil genesis and classification, 2nd edn. The Iowa State University Press, Ames

    Google Scholar 

  • Butterfield RP (1995) Promoting biodiversity: advances in evaluating native species for reforestation. For Ecol Manag 75:111–121

    Article  Google Scholar 

  • Calle Z, Galindo V, Cuartas CA, Murgueitio E (2007) Árboles útiles para fincas ganaderas: Dinde, Árbol Mora o Palo Amarillo Maclura tinctoria (L.) D. Don ex Steud. Moraceae. Carta Fedegan. 98:98–100. Fedegan. Bogotá, DC, Colombia

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle-ranching and landscape restoration. Unasylva 239:31–40

    Google Scholar 

  • Calvo-Alvarado JC, Arias D, Richter DD (2007) Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. For Ecol Manag 242(2):227–235

    Article  Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  CAS  PubMed  Google Scholar 

  • Canella-Gomes GA, Paiva R, Duarte De Oliveira P, José E, De Santiago A (2003) Plant regeneration from callus cultures of Maclura tinctoria, an endangered woody species. In Vitro Cell Dev Biol Plant 39:293–295

    Article  Google Scholar 

  • Centeno M (1994) Las plantaciones forestales en Nicaragua. Silvoenergía 58. CATIE, Turrialba, Costa Rica

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Nigh R, Soto‐Pinto L, Van Breugel M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41:142–153

    Article  Google Scholar 

  • Chízmar-Fernández C (2009) Plantas comestibles de Centroamérica. Instituto Nacional de Biodiversidad—INBio. Santo Domingo de Heredia, Costa Rica

  • Cioffi G, Morales-Escobar L, Braca A, De Tommasi N (2003) Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria. J Nat Prod 66:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Comision Conjunta (2008) Plan de Ordenación y Manejo Cuenca Hidrográfica (POMCH) del Rio La Vieja. Corporación Autónoma Regional del Quindío, Corporación Autónoma Regional de Risaralda, Corporación Autónoma Regional del Valle del Cauca

  • Cordero J, Boshier DH (2003) Descripción de Especies: Maclra tinctoria. In: Cordero J, Boshier DH (eds) Árboles de Centroamérica: Un manual para extensionistas. Oxford Forestry Institute (OFI, Oxford University, Oxford, UK) and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) Turrialba, Costa Rica, pp 690–697

  • D’antonio CARLA, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10(4):703–713

    Article  Google Scholar 

  • Dawkins HC (1963) Crown diameters: their relation to bole diameter in tropical forest trees. Commonw For Rev 42:318–333

    Google Scholar 

  • Delgadillo R, Aldunate J, Alvarado A (1991) Situación de la agroforestería en el subtrópico húmedo de la región del Chapare, Bolivia. In: Smyth TJ, Raun WR, Bertsch F (eds) Manejo de suelos tropicales en Latinoamérica. NCSU/CIMMYT/UCR/USAID. San José, Costa Rica, pp 257–263

  • DRYFLOR-Latin American and Caribbean Seasonally Dry Tropical Forest Floristic Network (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387

    Article  Google Scholar 

  • Duke JA, Vasquez R (1994) Amazonian ethnobotanical dictionary. CRC Press LLC, Boca Raton, p 224

    Google Scholar 

  • Echenique-Manrique R (1970) Descripción, caracteristicas y usos de 25 maderas tropicales mexicanas. Mexico D.F.

  • Evans J (1999) Planted forests of the wet and dry tropics: their variety, nature, and significance. New For 17:25–36

    Article  Google Scholar 

  • Ewel JJ, Putz FE (2004) A place for alien species in ecosystem restoration. Front Ecol Environ 2(7):354–360

    Article  Google Scholar 

  • Fang Z, Bailey RL (1998) Height-diameter models for tropical forests on Hainan Island in Southern China. For Ecol Manag 110:315–327

    Article  Google Scholar 

  • Feijoo A, Zúñiga MC, Quintero H, Lavelle P (2007) Relationships between land use and the earthworm communities in the basin of La Vieja river, Colombia. Pastos y Forrajes, 30

  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, Banin L, Abu Salim K, Affum-Baffoe K, Alexiades M, Almeida S, Amara I, Andrade A, Aragão LEOC, Araujo Murakami A, Arets EJMM, Arroyo L, Aymard GA, Baker TR, Banki OS et al (2012) Integrating height into global forest biomass estimates. Biogeosciences 9:3381–3403

    Article  Google Scholar 

  • García-Velásquez LM, Ríos-Quintana A, Molina-Rico LJ (2010) Structure, plant composition and leaf litter decomposition in soil, at two sites of an andean cloud forest (reforested and in spontaneous succession), in Peñas Blancas, Calarcá (Quindío), Colombia. Actual Biol 93:147–164

    Google Scholar 

  • González H, Nuñez A (1991) Mapa Geológico generalizado del Departamento del Quindío (Escala 1:100.000). Geología y Recursos Minerales.- Memoria Explicativa, Ingeominas, Bogotá, pp 1–42

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José

    Google Scholar 

  • Lam Bent HS, Montagnini F, Finney C (2011) A comparison of growth and yield among four native and one exotic tree species on plantations on six farms at Las Lajas, Chiriqui Province, Western Panama. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 81–96

    Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632

    Article  CAS  PubMed  Google Scholar 

  • Laubhann D, Sterba H, Reinds GJ, de Vries W (2009) The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model. For Ecol Manag 258(8):1751–1761

    Article  Google Scholar 

  • Martins MM, Setz EZF (2000) Diet of buffy tufted-eared marmosets (Callithrix aurita) in a forest fragment in southeastern Brazil. Int J Primatol 21:467–476

    Article  Google Scholar 

  • Montagnini F (2005) Plantaciones forestales con especies nativas. Una alternativa para la producción de madera y la provisión de servicios ambientales. Rev Recur Nat y Ambient 43:26–33

    Google Scholar 

  • Montagnini F, Jordan CF, Matta Machado CR (2000) Nutrient cycling and nutrient-use efficiency in agroforestry systems. In: Ashton M, Montagnini F (eds) Silvicultural basis for agroforestry systems. CRC Press, Boca Raton, FL, pp 131–160

    Google Scholar 

  • Montero M (1999) Factores de sitio que influyen en elcrecimiento de Tectona grandis L.f. y Bombacopsis quinata (Jacq.) Dugand, en Costa Rica. Tesis Mag.Ciencias. Universidad Austral de Chile, Valdivia/CATIE, Turrialba, Costa Rica

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Article  Google Scholar 

  • Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434

    Article  Google Scholar 

  • Navarro C, Cavers S, Lowe A (2011) Seed sourcing recommendations for forest restoration: impacts of tree isolation on progeny performance of cedar and mahogany in the neotropics. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York, pp 51–61

  • Nogueira EM, Fearnside PM, Nelson BW, Barbosa RI, Keizer EWH (2008) Estimates of forest biomass in the Brazilian Amazon: new allometric equations and adjustments to biomass from wood-volume inventories. For Ecol Manag 256:1853–1867

    Article  Google Scholar 

  • Pérez JBE, Boraemisza P, Sollins (1993). Identificacion de especies forestales acumuladoras de aluminio en una plantación forestal experimental ubicada en Sarapiquí, Costa Rica. Agronomía Costarricense 17(2):99–103

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann N Y Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Piotto D, Víquez E, Montagnini F, Kanninend M (2004a) Pure and mixed forest plantations with native species of the dry tropics of Costa Rica: a comparison of growth and productivity. For Ecol Manag 190:359–372

    Article  Google Scholar 

  • Piotto D, Montagnini F, Kanninen M, Ugalde L, Viquez E (2004b) Forest plantations in Costa Rica and Nicaragua: performance of species and preferences of farmers. J Sustain For 18(4):59–77

    Article  Google Scholar 

  • Rangel A (1949) Maderas industriales de Colombia. Caribb For 10(3):161–162

    Google Scholar 

  • Roberts M (2017). Dyeing with Fustic. http://www.wildcolours.co.uk/html/fustic.html. Accessed 19 Jan 2017

  • Roig JT (1974) Plantas medicinales, aromáticas o venenosas de Cuba. Ed. Ciencia y Técnica, Instituto del Libro. La Habana, Cuba

  • Rorison IH (1986) The response of plants to acid soils. Experentia 42:357–362

    Article  CAS  Google Scholar 

  • Samarasinghe SJ, Ashton PMS, Gunatilleke IAN, Gunatilleke CVS (1995) Thining guidelines for tree species of different successional status. J Trop For Sci 8:44–52

    Google Scholar 

  • Sánchez P (1976) Properties and management of soils in the tropics. Wiley, New York, p 618

    Google Scholar 

  • Stanley WG, Montagnini F (1999) Biomass and nutrient accumulation in pure and mixed plantations of indigenous tree species grown on poor soils in the humid tropics of Costa Rica. For Ecol Manag 113(1):91–103

    Article  Google Scholar 

  • Suarez A, Williams-Linera G, Trejo C, Valdez-Hernandez JI, Cetina-Alcala VM, Vibrans H (2012) Local knowledge helps select species for forest restoration in a tropical dry forest of central Veracruz, Mexico. Agrofor Syst 85:35–55

    Article  Google Scholar 

  • The Bonn Challenge (2017) Bonn challenge Latin America meeting. http://www.bonnchallenge.org/content/bonn-challenge-latin-america-meeting. Accessed 28 June 2017

  • The Wood Data-Base (2016) Argentine Osage orange. http://www.wood-database.com/argentine-osage-orange/. Accessed 1 Nov 2016

  • Thomas GW (1982) Exchangeable cations. Methods of soil analysis. Part 2. Chemical and Microbiological Properties, 2nd edn, vol 9. Soil Science of America Book Series, pp 159–165

  • Thomas GW (1996a) Soil pH and soil acidity. Methods of soil analysis part 3—chemical methods, 3rd edn, vol 5. Soil Science of America Book Series, pp 475–490

  • Thomas SC (1996b) Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. Am J Bot 83:556–566

    Article  Google Scholar 

  • Torres RB, Matheus LAF, Rodrigues RR, Leitdo Filho HDF (1992) Espécies florestais nativas para plantio em areas de brejo. O Agronomico 44:13–16

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • UNEP-WCMC (2016) The state of biodiversity in Latin America and the Caribbean: a mid-term review of progress towards the Aichi Biodiversity Targets. UNEP-WCMC, Cambridge, UK

  • Vallejos BO (1996) Productividad y relaciones del índice de sitio con variables fisiográficas, edafoclimáticas y foliares para Tectona grandis L.f., Bombacopsis quinata (Jacq.) Dugand y Gmelina arborea Roxb. en Costa Rica. Tesis Mag. Ciencias. CATIE, Turrialba, Costa Rica

  • van Breugel M, Hall JS, Craven DJ, Gregoire TG, Park A, Dent DH, Wishnie MH, Mariscal E, Deago J, Ibarra D, Cedeño N, Ashton MS (2011) Early growth and survival of 49 tropical tree species across four sites differing in soil fertility and rainfall. For Ecol Manag 261:1580–1589

    Article  Google Scholar 

  • Van der Slooten JJ, and PE Martinez (1959) Descripción y propiedades de algunas maderas venezolanas. Instituto Forestal Latino americano de Investigación y Capacitación. Editado por el centro de documentación del instituto. Mérida, Venezuela, p 110

  • Vargas W (2015) A brief description of the vegetation, with special emphasis on the intermediate pioneers of the dry forests of La Jagua, in the upper basin of the Magdalena River in Huila. Colomb For 18:47–70

    Article  Google Scholar 

  • Vieira DL, Holl KD, Peneireiro FM (2009) Agro-successional restoration as a strategy to facilitate tropical forest recovery. Restor Ecol 17(4):451–459

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Westoby M (1984) The self-thinning rule. Adv Ecol Res 14:167–225

    Article  Google Scholar 

  • White J (1981) The allometric interpretation of the self-thinning rule. J Theor Biol 89:475–500

    Article  Google Scholar 

  • Williams-Linera G, Alvarez-Aquino C, Hernández-Ascención E, Toledo M (2011) Early successional sites and the recovery of vegetation structure and tree species of the tropical dry forest in Veracruz, Mexico. New For 42:131–148

    Article  Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeño N, Ibarra D, Condit R, Ashton MS (2007) Performance of 24 tropical tree species in relation to reforestation strategies in Panama. For Ecol Manag 243:39–49

    Article  Google Scholar 

  • World Resources Institute (WRI) (2014) Initiative 20 × 20: bringing 20 million hectares of degraded land in Latin America and the Caribbean into restoration by 2020. http://www.wri.org/our-work/project/initiative-20x20. Accessed 20 Oct 2015

  • World Resources Institute (WRI) (2015) RELEASE: Latin American forest landscape restoration pledges reach 27.7 million hectares, $730 million through Initiative 20 × 20. http://www.wri.org/news/2015/12/release-latin-american-forest-landscape-restoration-pledges-reach-248-million-hectares. Accessed 28 June 2017

  • Wu TW, Zeng LH, Wu J, Fung KP (1994) Morin: a wood pigment that protects three types of human cells in the cardiovascular system against oxyradical damage. Biochem Pharmacol 47(6):1099–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Tropical Resources Institute of the Yale School of Forestry and Environmental Studies for funding this work. We also owe special thanks to Timothy Gregoire and Henry Glick for help with regression analyses and to Liza Comita for sharing her references on Agroforestry. This work would have failed without the help of many partners in Colombia; especially the cooperation with Universidad Tecnológica de Pereira (UTP) that generously provided equipment and provided access to drying ovens for bulk density measurements. We thank UTP’s GATA Research Group which provided us their field knowledge and experience; especially Dr. Juan Carlos Camargo. We thank Jessica Sánchez for helping with data collection and for preparing the soils for analysis. We also thank staff from CIPAV, especially Enrique Murgueitio and Zoraida Calle for knowledge and information based on their 30 + years of experience working with farmers in Colombia. Lastly, we thank José Alirio Bolivar for providing us the farmer contacts; and we thank the farmers who generously opened their doors to us and allowed access to their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Montes-Londoño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes-Londoño, I., Montagnini, F. & Ashton, M.S. Allometric relationships and reforestation guidelines for Maclura tinctoria, an important multi-purpose timber tree of Latin America. New Forests 49, 249–263 (2018). https://doi.org/10.1007/s11056-017-9617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-017-9617-1

Keywords

Navigation