Skip to main content
Log in

Improving initial trials in tree breeding using kinship and breeding values estimated in the wild: the case of Prosopis alba in Argentina

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Most Argentinean forests have been lost by over exploitation and expansion of agricultural areas. The National breeding program for the native species Prosopis alba is still in its initial phase with only a few progeny trials installed from material collected in the wild and the first genetic studies are underway. Breeding value (BV) estimates based on pedigree data from a progeny trial were first compared to those derived by using microsatellite based kinship estimates to confirm the potential accuracy of g-best linear unbiased predictions (G-BLUP) when pedigree information is lacking. Afterwards, the possible genetic effects of alternative selection strategies to collect improved seeds from a wild population were evaluated. To achieve this goal the relationship among average genetic gain (predicted by G-BLUP), inbreeding and sampling size of the collected materials were weighed in a wild population consisting of trees of similar ages. The results obtained suggest that kinship estimates based on molecular data and breeding value predictions BV used for the selection of elite trees in wild populations may contribute to improve the genetic properties of the founder population. Controlling kinship allows reducing sampling size from 20 to 10 individuals per origin with no significant increase of inbreeding or loss of genetic gain. For a selected group of only ten top individuals per origin, the replacement of two strongly reduces the average group coancestry with minimal gain loss. Simultaneous selection for two traits by selection index might produce a gain of near 6 % in height and 2 % in diameter. The use of molecular marker information may contribute to reduce the time needed in a P. alba improvement program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamoli JR, Ginzburg, Torrilla S (2011) Escenarios productivos y ambientales del Chaco Argentino: 1977–2010. http://agrolinux.agrositio.com/producir_conservando/documentos/escenarios_productivos_ambientales_chaco.pdf

  • Anderson WE, Sanchez L, Andersson B (1999) Group coancestry controlled selection in a Pinus sylvestris L breeding program. Theor Appl Genet 99:73–80

    Article  Google Scholar 

  • Assoumane AA, Vaillant A, Mayaki Z, Verhaegen D (2009) Isolation and characterization of microsatellite markers for Acacia Senegal (L.) Willd., a multipurpose arid and semi-arid tree. Mol Ecol Resour 9(5):1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Bessega C, Ferreyra L, Julio N, Montoya S, Saidman BO, Vilardi JC (2000) Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132:19–27

    Article  CAS  PubMed  Google Scholar 

  • Bessega C, Saidman BO, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC (2009) Consistency between marker and genealogy-based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). Am J Bot 96:458–465

    Article  PubMed  Google Scholar 

  • Bessega C, Saidman BO, Darquier MR, Ewens M, Felker P, Vilardi JC (2010) Accuracy of dominant markers for estimation of relatedness and heritability in an experimental stand of Prosopis alba (Leguminosae). Tree Genet Genomes 7:103–115

    Article  Google Scholar 

  • Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2011) Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. Tree Genet Genomes 8:277–288. doi:10.1007/s11295-011-0439-6

    Article  Google Scholar 

  • Bessega C, Pometti CL, Miller JT, Watts R, Saidman BO, Vilardi JC (2013) New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae). Appl Plant Sci 1(5): 1200324. doi:10.3732/apps.1200324; http://www.bioone.org/loi/apps

  • Boys A, Cherry M, Dayansdan S (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae). Am J Bot 92(5):833–841

    Article  CAS  PubMed  Google Scholar 

  • Brisbane JR, Gibson JP (1995) Balancing selection response and rate of inbreeding by including genetic relationships in selection decisions. Theor Appl Genet 91:421–431

    CAS  PubMed  Google Scholar 

  • Burdon RD, Shelbourne CJA (1971) Breeding populations for recurrent selection: conflicts and possible solutions. N Z J For Sci 1:174–193

    Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I-One-table methods. R News 4:5–10

    Google Scholar 

  • Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ (2012) The importance of information on relatives for the genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schenes. Genet Sel Evol 44:4. doi:10.1186/1297-9686-44-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Cros D, Sánchez L, Cochard B, Samper P, Denis M, Bouvet JM, Fernández J (2014) Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population. Theor Appl Genet. doi:10.1007/s00122-014-2273-3

    Google Scholar 

  • Degen B, Streiff R, Ziegenhagen B (1999) Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci. Heredity 83:597–603. doi:10.1038/sj.hdy.6886220

    Article  PubMed  Google Scholar 

  • Delvalle P, Antanasio M, Ayala M, Svirz I, Petkoff J (2003) Ensayos de orígenes de Prosopis alba grises (algarrobo blanco). Revista Instituto Nacional de Tecnología Agropecuaria. Estación Experimental Colonia Benítez “Augusto G. Schulz” : 1–8

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7(2):47–52

    Google Scholar 

  • El-Kassaby YA, Lstiburek M (2009) Breeding without breeding. Genet Res 91:111–120

    Article  Google Scholar 

  • El-Kassaby YA, Klapste J, Guy RD (2012) Breeding without breeding: selection using the genomic best linear unbiased predictor method (G-BLUP). New For 43:631–637

    Article  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genomes 4:250–255. doi:10.3835/plantgenome2011.08.0024

    Article  Google Scholar 

  • Endelman JB, Jannink JL (2012) Shrinkage estimation of the realized relationship matrix. G3: genes. Genomes, Genet 2:1405–1413. doi:10.1534/g3.112.004259

    Google Scholar 

  • Ewens M, Gezan S, Felker R (2012) Five year field evaluation of Prosopis alba clones on pH 9-10 soils in Argentina selected for growth in the greenhouse at seawater salinities (45 dS m−1). Forests 3:95–113. doi:10.3390/f3010095

  • FAO (2007) Situación de los Bosques del Mundo, Roma, Italia. http://www.fao.org/docrep/009/a0773s/a0773s00.htm

  • Felker P, Guevara JC (2003) Potential of commercial hardwood forestry plantations in arid lands—an economic analyses of Prosopis lumber production in Argentina and the United States. For Ecol Manag 186:271–286

    Article  Google Scholar 

  • Felker P, Smith D, Wiesman C, Bingham RL (1989) Biomass production of Prosopis alba clones at two non-irrigated field sites in semiarid south Texas. For Ecol Manag 29:135–150

    Article  Google Scholar 

  • Felker P, Lopez C, Soulier C, Ochoa J, Abdala R, Ewens M (2001) Genetic evaluation of Prosopis alba (algarrobo) in Argentina for cloning elite trees. Agrofor Syst 53:65–76

    Article  Google Scholar 

  • Felker P, Ewens M, Velarde M, Medina D (2008) Initial evaluation of Prosopis alba griseb clones selected for growth at seawater salinities. Arid Land Res Manag 22:334–345

    Article  Google Scholar 

  • Fernandez J, Toro MA (2006) A new method to estimate relatedness from molecular markers. Mol Ecol 15:1657–1667

    Article  CAS  PubMed  Google Scholar 

  • Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230

    Article  CAS  PubMed  Google Scholar 

  • Fienieg ES, Gakusera P (2013) The use and integration of molecular DNA information in conservation breeding programmes: a review. J Zoo Aquar Res 1(2):44–51

    Google Scholar 

  • Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens IPF (2008) Pedigree-free animal models: the relatedness matrix reloaded. Proc R Soc Lond B Biol Sci 275:639–647

    Article  Google Scholar 

  • Gill JL (1965) Effects of finite size on selection advance in simulated populations. Aust J Biol Sci 18:599–617

    CAS  PubMed  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R Package. J Stat Softw 33(2):1–22

    Google Scholar 

  • Hadfield D, Richardson DS, Burke T (2006) Towards unbiased parentage combining genetic, behavioral and spatial data in a Bayesian framework. Mol Ecol 15:3715–3730

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson R (2004) Marker-asisted selection. Plant Breed Rev 24(1):293–309

    Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the “animal model”. Philos Trans R Soc Lond B 359:873–890

    Article  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    Article  Google Scholar 

  • Lande R (1980) Genetic variation and phenotypic evolution during allopatric speciation. Am Nat 116:463–479

    Article  Google Scholar 

  • Lindgren D, Mullin TJ (1997) Balancing gain and relatedness in selection. Silvae genet 46:124–129

    Google Scholar 

  • Lopez C, Maldonado A, Salim V (2001) Variación genética de Progenies de Prosopis alba. Investigación Agraria. Sistemas y Recursos Forestales 10(1):59–68

    Google Scholar 

  • Lstiburek M, Klapste J, Kobliha J, El-Kassaby YA (2012) Breeding without breeding. effect of gene flow on fingerprinting effort. Tree Genet Genomes 8:873–877

    Article  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mottura MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5:487–489

    Article  CAS  Google Scholar 

  • Namkoong G, Kang HC, Brouars JS (1988) Tree breeding: principles and strategies. Monographs on theoretical and applied genetics. Spinger, New York

    Book  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen R, Tarpy DR, Kern Reeve H (2003) Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol Ecol 12:3157–3164

    Article  PubMed  Google Scholar 

  • Olsson T, Lindgren D, Li B (2001) Balancing genetic gain and relatedness in seed orchads. Silvae Genet 50:222–227

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pometti CL, Pizzo B, Brunetti M, Macchioni N, Ewens M, Saidman BO (2009) Argentinean native wood species: physical and mechanical characterization of some Prosopis species and Acacia aroma (Leguminosae; Mimosoideae). Bioresour Technol 100(6):1999–2004

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.r-project.org/

  • Ritland K (1996a) Estimators of pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Ritland K (1996b) A marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50(3):1062–1073

    Article  Google Scholar 

  • Roig FA (1993) Aportes a la Etnobotánica del Género Prosopis. In: Contribuciones Mendocinas a la quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID, Unidades de Botánica y Fisiología vegetal, Iadiza (eds.), p 99–121

  • Rojas S, Ch YKC, Nagao EO (2011) Diversidade genética em acessos do banco de germoplasma de camu-camu (Myrciaria dubia [H.B.K.] McVaugh) do INPA usando marcadores microssatélites (EST-SSR). Revista Corpoica Ciencia y Tecnología Agropecuaria 12(1):51–64

    Google Scholar 

  • Salto CS (2011) Variación genética en progenies de polinización abierta de Prosopis alba Griseb. de la Región Chaqueña. Maestría en genética vegetal Thesis. Área de mejoramiento genético UNR – Concordia

  • Sanchez L, Yanchuk AA, King JN (2008) Gametic models for multitrait selection schemes to study variance of response and drift under adverse genetic correlations. Tree Genet Genomes 4:201–212

    Article  Google Scholar 

  • Sillampää MJ (2011) On statistical methods for estimating heritability in wild populations. Mol Ecol 20:1324–1332

    Article  Google Scholar 

  • Stoehr M, Yanchuk AA, Xie Ch, Sanchez L (2008) Gain and diversity in advances generation coastal Douglas fir selections for seed production populations. Tree Genet Genomes 4:193–200. doi:10.1007/s11295-007-0100-6

    Article  Google Scholar 

  • Verga A (2005) Recursos genéticos, mejoramiento y conservación de especies del género Prosopis. Mejores árboles para más forestadores: El Programa de Producción de Material de Propagación Mejorado y el Mejoramiento Genético en el Proyecto Forestal de Desarrollo Edición: Carlos A. Norberto. SAGPyA-BIRF

  • Verga A (2009) Domesticación de especies forestales nativas del Parque Chaqueño (Algarrobo) http://inta.gob.ar/proyectos/pnfor-044341

  • Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11(1):141–145

    Article  PubMed  Google Scholar 

  • Wang J, Brekke P, Huchard E, Knapp LA, Cowlishaw G (2010) Estimation of parameters of inbreeding and genetic drift in populations with overlapping generations. Evol Int J Organic Evol 64:1704–1718

    Article  Google Scholar 

  • Weir RP, Lindgren D (1996) Effecive family number following selection with restrictions. Biometrics 52:525–535

    Article  Google Scholar 

  • White TL, Neale DB (2007) Data analysis-mixed models, variance components and breeding values. In: White TL, Adams WT, Neale DB (eds) Forest genetics, p 395–437. ISBN 978-1-84593-285-5. doi: 10.1079/9781845932855.0395

  • Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26

    Article  PubMed  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  CAS  PubMed  Google Scholar 

  • Yanchuk AD, Sanchez L (2011) Multivariate selection under adverse genetic correlations: impacts of population sizes and selection strategies on gains and coancestry in forest tree breeding. Tree Genet Genomes 7:1169–1183

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 11220090100147, Universidad de Buenos Aires (20020100100008) and Agencia Nacional de Promociones Científicas y Tecnológicas (ANPCyT) PICT-2013-0478 given to JCV and BOS. We extend our sincere appreciation to all the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bessega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessega, C., Pometti, C., Ewens, M. et al. Improving initial trials in tree breeding using kinship and breeding values estimated in the wild: the case of Prosopis alba in Argentina. New Forests 46, 427–448 (2015). https://doi.org/10.1007/s11056-015-9469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-015-9469-5

Keywords

Navigation