Skip to main content

Advertisement

Log in

Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.)

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Response of growth and secondary metabolites to light intensity are useful measurements to determine suitable silviculture treatments for the cultivation of medicinal plants. Here, we analyzed the growth, flavonols (total flavonol, quercetin, kaempferol, and isorhamnetin) content, flavonols yield per plant, and expression of flavonoid biosynthesis-related genes in 2-year Ginkgo (Ginkgo biloba L.) seedlings at four different light intensities (100, 76, 40, and 25 % of full sunlight) in a greenhouse setting. Across all light intensities, the 76 % sunlight treatment produced the highest growth of total biomass, root, stem, and leaf, indicating negative effects of either fulllight or heavy shading on Ginkgo seedling development. Both flavonols (total flavonol, quercetin, kaempferol, and isorhamnetin) content and expression of flavonoid biosynthesis-related genes [PAL (Phenylalanine ammonia-lyase), CHS (Chalcone synthase), F3H (Flavanone 3-hydroxylase), and FLS (Flavonol synthase)] in leaves were highest under 100 % sunlight, suggesting that full sunlight promotes the expression of flavonoid biosynthesis-related genes and increases flavonoid biosynthesis. The highest and lowest flavonol contents were found in leaves and stems, respectively. The 76 % sunlight treatment produced the highest flavonols yield while the 100 % sunlight produced the highest flavonoids content in leaves, indicating that flavonol production per unit land area depends not only flavonol content but also biomass. Overall, in order to achieve the highest flavonols yield per area in Ginkgo leaf-harvesting plantations, it is important to manipulate light conditions of field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Agati G, Stefano G, Biricolti S, Tattini M (2009) Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance. Ann Bot 104:853–861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  PubMed  CAS  Google Scholar 

  • Awad MA, Wagenmakers PS, de Jager A (2001) Effects of light on flavonoid and chlorogenic acid levels in the skin of ‘Jonagold’ apples. Sci Hortic 88:289–298

    Article  CAS  Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Ballizany WL, Hofmann RW, Jahufer MZZ, Barrett BA (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177

    Article  CAS  Google Scholar 

  • Cai ZQ, Wang WH, Yang J, Cai CT (2009) Growth, photosynthesis and root reserpine concentrations of two Rauvolfia species in response to a light gradient. Ind Crops Prod 30:220–226

    Article  CAS  Google Scholar 

  • Cao FL, Jin JL, Wang GB, Li Q, Chu SH (1999) A preliminary study on silvicultural practice of Ginkgo plantation for leaf harvest. J Nanjing For Univ 23(5):60–63

    Google Scholar 

  • Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  PubMed  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chinese Pharmacopoeia Commission (2010) Pharmacopoeia of the People’s Republic of China. Chinese Medical Science and Technology Press, Beijing, pp 243–244

    Google Scholar 

  • Clostre F (1999) Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000. Ann Pharm Fr 57(Suppl 1):1S8–1S88

  • Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J Exp Bot 63:2655–2665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cortell JM, Kennedy JA (2006) Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot noir fruit and extraction in a model system. J Agric Food Chem 54:8510–8520

    Article  PubMed  CAS  Google Scholar 

  • Cronin G, Lodge DM (2003) Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry and resistance to herbivory of two freshwater macrophytes. Oecologis 137:32–41

    Article  Google Scholar 

  • Deng BO, Shang XL, Fang SZ, Li QQ, Fu XX, Su J (2012) Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus. J Agric Food Chem 60:6286–6292

    Article  PubMed  CAS  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    CAS  Google Scholar 

  • Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res (NY) 24:851–874

    Article  CAS  Google Scholar 

  • Field TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127:566–574

    Article  CAS  Google Scholar 

  • Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K (2006) Organspecific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 70:632–638

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt KE, Lampi MA, Greenberg BM (2008) The effects of far-red light on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. Photochem Photobiol 84:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Goto-Yamamoto N, Mori K, Numata M, Koyama K, Kitayama M (2010) Effects of temperature and water regimes on flavonoid contents and composition in the skin of red-wine grapes. J Int Sci Vigne Vin (special issue Macrowine):75–80

  • He X, Huang W, Chen W, Dong T, Liu C, Chen Z, Xu S, Ruan Y (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci 21:199–203

    Article  CAS  Google Scholar 

  • Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C (2004) Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J 38:765–778

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell Environ 33:1239–1247

    CAS  Google Scholar 

  • Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic-pathway in plants—function and evolution. BioEssays 16:123–132

    Article  CAS  Google Scholar 

  • Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54–64

    Article  PubMed  CAS  Google Scholar 

  • Lafuente MT, Ballester AR, Calejero J, González-Candelas L (2011) Effect of high-temperature-conditioning treatments on quality, flavonoid composition and vitamin C of cold stored ‘Fortune’ mandarins. Food Chem 128:1080–1086

    Article  CAS  Google Scholar 

  • Leng P, Su S, Li Y, Wang S, Jiang X (2001) Effects of fertilizer and drought stress on growth as well as flavonol glycosides and terpene lactone content of Ginkgo biloba seedlings. J Beijing Agric Coll 16(1):32–37

    Google Scholar 

  • Lillo C, Lea US, Ruoff P (2008) Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant, Cell Environ 31:587–601

    Article  CAS  Google Scholar 

  • Ma ZQ, Li SH, Zhang MJ (2010) Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilus Plants. HortScience 45:863–867

    Google Scholar 

  • Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pang YZ, Shen GA, Wu WS, Liu XF, Lin J, Tan F, Sun XF, Tang KX (2005) Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci 168:1525–1531

    Article  CAS  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A (2010) Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chem 119:1293–1299

    Article  CAS  Google Scholar 

  • Singh B, Kaur P, Gopichand, Singh RD, Ahuja PS (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79:401–418

    Article  PubMed  CAS  Google Scholar 

  • Stefanelli D, Goodwin I, Jones R (2010) Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res Int 43:1833–1843

    Article  CAS  Google Scholar 

  • Tao J, Chen P, She X (1999) Studies on the photosynthetic characteristics of Ginkgo. Acta Hortic Sinica 26(3):157–160

    Google Scholar 

  • Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59:235–247

    CAS  Google Scholar 

  • van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55

    Article  PubMed  Google Scholar 

  • Wang CY, Chen CT, Wang SY (2009) Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem 117:426–431

    Article  CAS  Google Scholar 

  • Wang YS, Gao LP, Shan Y, Liu YJ, Tian YW, Xia T (2012) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 141:7–16

    Article  CAS  Google Scholar 

  • Ward CP, Redd K, Williams BM, Caler JR, Luo Y, McCoy John G (2002) Ginkgo biloba extract: cognitive enhancer or antistress buffer. Pharmacol Biochem Behav 72:913–922

    Article  PubMed  CAS  Google Scholar 

  • Xie BD, Wang HT (2006) Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L. J Nanjing For Univ 30:51–54

    Google Scholar 

  • Xu F, Cai R, Cheng SY, Du HW, Wang Y, Cheng SH (2008a) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7:721–729

    Google Scholar 

  • Xu F, Cheng H, Cai R, Li LL, Chang J, Zhu J, Zhang FX, Chen LJ, Wang Y, Cheng SH, Cheng SY (2008b) Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Mol Cells 26:536–547

    PubMed  CAS  Google Scholar 

  • Yuan Y, Liu YJ, Wu C, Chen SQ, Wang ZY, Yang ZC, Qin SS, Huang LQ (2012) Water deficit affected flavonoid accumulation by regulating hormone metabolism in scutellaria baicalensis georgi roots. PLoS ONE 7:1–10

    Google Scholar 

  • Zhang SB, Hu H, Xu K, Li ZR, Yang YP (2007) Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J Plant Physiol 164:611–620

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shen Q, Lu JC, Li JY, Liu WY, Yang JJ, Li J, Xiao K (2010) Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B. Food Chem 119:1491–1496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the research program ‘‘The environmental inducing mechanisms of flavonoids in the leaves of Ginkgo biloba L.’’ (31070557) provided by the National Natural Science Foundation of China, and “Research and demonstration of oriented cultivation technology in Ginkgo and neem plantations” (2012BAD21B04) provided by Science and Technology Department of China, and “The planting technologies of medical plantation for Ginkgo and camphor trees” (20120460102) provided by State Forestry Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousry A. El-Kassaby.

Additional information

You Xu and Guibin Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, G., Cao, F. et al. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New Forests 45, 765–776 (2014). https://doi.org/10.1007/s11056-014-9435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9435-7

Keywords

Navigation