Skip to main content

Advertisement

Log in

Assessing regional species pools for restoration programs in Spain

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The relationship between current and potential distribution in 34 main Spanish forest tree species (data from the Third Spanish Forest Inventory) was determined using a Maximum Entropy functional approximation with climatic data as predictive variables. A method for detecting regional species pools at two different scales: biogeoclimatic classes (CLATERES classification), and forest landscape types (WWF classification) has been proposed. Then, the Absence percentage for a species (i.e. the proportion of landscapes types or biogeoclimatic classes in which the species is included in the regional species pool but is actually not present) was determined. Results show higher figures of Potential Species Richness in the Pyrenees and the Cantabrian Range, while inland or coastal Mediterranean semiarid landscapes have lower figures. Using a classification based on biogeoclimatic variables (CLATERES) improves precision when estimating Absent Species Richness. Absence percentage is zero or close to zero for five species (Pinus uncinata, Quercus robur, Quercus ilex, Quercus humilis and Juniperus communis), while for other six species (Acer pseudoplatanus, Fraxinus angustifolia, Alnus glutinosa, Populus alba, Sorbus aucuparia and Pinus pinea) the figures are higher than 0.6, which means the species is absent in more than 60 % of the landscapes or biogeoclimatic classes that it could inhabit. The relationships between tree life traits and the absence of species from the ecosystems studied is slight but non-dominant species, species not subjected to forest management, or zonal species are less widely distributed that their climatic potentiality indicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alía R, García del Barrio JM, Iglesias S, Mancha JA, De Miguel J, Nicolás J, Pérez F, Sánchez de Ron D (2009) Regiones de Procedencia de Especies Forestales en España. O.A. Parques Nacionales. MARM, Madrid

    Google Scholar 

  • Austin MP, Pausas JG, Nicholls O (1996) Patterns of tree species richness in relation to environment in southeastern New South Wales. Aust J Ecol 21:154–164

    Article  Google Scholar 

  • Blach-Overgaard A, Svenning JC, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391

    Google Scholar 

  • Bolle H-J (ed) (2003) Mediterranean climate: variability and trends. Regional climate series. Springer, Berlin

    Google Scholar 

  • Brown KA, Spector S, Wu W (2008) Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species. J Appl Ecol 45:1639–1648

    Article  Google Scholar 

  • Brudvig LA, Mabry CM (2008) Trait-based filtering of the regional species pool to guide understory plant reintroductions in Midwestern oak savannas, USA. Restor Ecol 16:290–304

    Article  Google Scholar 

  • Bunce RGH, Barr J, Clarke RT, Howard C, Lan AMJ (1996) ITE Merlewood land classification of Great Britain. J Biogeogr 23:625–634

    Article  Google Scholar 

  • Bunce RGH, Carey PD, Elena-Rosselló R, Orr J, Watkins J, Fuller R (2002) A comparison of different biogeographical classifications of Europe, Great Britain and Spain. J Environ Manag 65:121–134

    Article  CAS  Google Scholar 

  • CE (1999) Directive 1999/105/CE on marketing of forest reproductive material in E. Union. Official Journal of the European Community

  • Coudun C, Gegout J-C, PIedallu Ch, Rameau J-C (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–17563

    Article  Google Scholar 

  • de Dios VR, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New For 33(1):29–40

    Article  Google Scholar 

  • Elena-Rosselló R (1997) Clasificación Biogeoclimática de España Peninsular y Balear. Ministerio de Agricultura, Pesca y Alimentación. Madrid

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams JS, Wisz MS, Zimmermann ME (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Enright NJ, Miller BP, Crawford A (1994) Environmental correlates of vegetation patterns and species richness in the northern Grampians, Victoria. Aust J Ecol 19:159–168

    Article  Google Scholar 

  • Ferrer-Castán D, Vetaas OR (2005) Pteridophyte richness, climate and topography in the Iberian Peninsula: comparing spatial and nonspatial models of richness patterns. Global Ecol Biogeogr 14:155–165

    Article  Google Scholar 

  • Gonzalo J (2010) Diagnosis fitoclimática de la España Peninsular. Hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Naturaleza y Parques Nacionales. Serie Técnica. Organismo Autónomo Parques Nacinales. MMRM, Madrid

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution; offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Phillips SJ, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Hanspach J, Kühn I, Pompe S, Klotz S (2010) Predictive performance of species distribution models depends on species traits. Perspect Plant Ecol 12:219–225

    Article  Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14:170–176

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2004). The WorldClim interpolated global terrestrial climate surfaces. Available at http://biogeo.berkeley.edu/

  • Holmes PM, Richardson DC (1999) Protocols for restoration based on recruitment dynamics, community structure, and ecosystem function: perspectives from South African fynbos. Restor Ecol 7:215–230

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jimenez P, Díaz-Fernández P, Iglesias S, Prada A, García del Barrio JM, Alba N, Alia R (2009) National strategy for the conservation and sustainable use of forest genetic resources: a framework for coordinating Central and Autonomous Regional Government activities in Spain. Inv Agrar: Sist y Rec For 18:13–19

    Google Scholar 

  • Jones TA, Monaco TA (2009) A role for assisted evolution in designing native plant materials for domesticated landscapes. Front Ecol Environ 7:541–547

    Article  Google Scholar 

  • Kadoya T, Suda S, Nishihiro J, Washitani I (2008) Procedure for predicting the trajectory of species recovery based on the nested species pool information: Dragonflies in a wetland restoration site as a case study. Restor Ecol 16:397–406

    Article  Google Scholar 

  • Levich AP (2000) Variational modelling theorems and algocoenoses functioning principles. Ecol Model 131:207–227

    Article  Google Scholar 

  • Lobo JM, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linnean Soc 73:233–253

    Article  Google Scholar 

  • Maetzke F (2011) Systematic silviculture and Mediterranean forest complexity: the need for a new paradigma in forestry. Ital J For Mt Environ 66:229–232

    Google Scholar 

  • MCPFE (2007) Pan-European Recommendations for Afforestation and Reforestation in the context of the UNFCCC. Ministerial Conference on the Protection of Forests in Europe, Varsow

    Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  • Miller AJ, Knouft JH (2006) GIS-based characterization of the geographic distributions of wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea (Anacardiaceae). Am J Bot 93:1757–1767

    Article  PubMed  Google Scholar 

  • Ministerio de Medio Ambiente -MMA- (2002). Mapa forestal de España escala 1:50.000 (MFE50)

  • Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol Monogr 68:152–182

    Article  Google Scholar 

  • Oliet J, Planelles R, Artero F, Valverde R, Jacobs D, Segura M (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forest 37(3):313–331

    Article  Google Scholar 

  • Ortega M, Metzger MJ, Bunce RGH, Wrbka T, Allard A, Jongman RHG, Rob HG, Elena-Rosselló R (2012) The potential for integration of environmental data from regional stratifications into a European monitoring framework. J Environ Plann Man 55:39–57

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Schapired RE (2004) A maximum entropy approach to species distribution modeling. In: 21st international conference on machine learning, Banff, Canada

  • Phillips SJ, Anderson RP, Schapired RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Mod 190:231–259

    Article  Google Scholar 

  • Pueyo S (2006) Diversity: between neutrality and structure. Oikos 112:392–405

    Article  Google Scholar 

  • Pueyo S, He F, Zillio T (2007) The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecol Lett 10:1017–1028

    Article  PubMed  Google Scholar 

  • Regato P, Gamisans J, Gruber M (1995) A syntaxonomical study of Pinus nigra subsp, salzmannii forests in the Iberian Peninsula. Phytocoenologia 25:561–578

    Google Scholar 

  • Rodríguez-Sánchez F, Hampe A, Jordano P, Arroyo J (2010) Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: a review. Rev Palaeobot Palyno 162:507–521

    Article  Google Scholar 

  • Rubio A, Sánchez Palomares O, Gómez V, Graña D, Elena-Rosselló R, Blanco A (2002) Autoecología de los castañares de Castilla (España). Invest Agr: Sist Recur For 11(2):373–393

    Google Scholar 

  • Ruiz de la Torre J (2006) Flora Mayor. O. A. Parques Nacionales. Ministerio de Medio Ambiente, Madrid 1757 pp

    Google Scholar 

  • Sainz-Ollero H, Sánchez de Dios R, García-Cervigón A (2010) La cartografía sintética de los paisajes vegetales españoles: una asignatura pendiente en Geobotánica. Ecología 23:249–272

    Google Scholar 

  • Sánchez-Palomares O, Rubio A, Blanco A (2004) Definición y cartografía de las áreas potenciales fisiográfico-climáticas de hayedo en España. Invest Agrar, Sist Recur For Fuera de serie, pp 13–62

    Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest on the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Article  Google Scholar 

  • Scott CE, Alofs KM, Edwards BA (2011) Putting dark diversity in the spotlight. TREE 26:263–264

    PubMed  Google Scholar 

  • SER (2004) Society for Ecological Restoration International Science & Policy Working Group. The SER International Primer on Ecological Restoration. www.ser.org & Tucson: Society for Ecological Restoration International

  • Shipley B, Vile D, Garnier E (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314:812–814

    Article  PubMed  CAS  Google Scholar 

  • Soria-Auza RW, Kessler M, Bach K, Barajas-Barbosa PM, Lehnert M, Herzog SK, Bohner J (2010) Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia. Ecol Model 221:1221–1229

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Svenning J-C, Skov F (2007) Ice age legacies in the geographical distribution of tree richness in Europe. Global Ecol Biogeogr 16:234–245

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Sykes MT, Araujo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60

    Article  Google Scholar 

  • Vallejo VR (2010) Problems and perspectives of dryland restoration. In: Bautista S, Aronson J, Vallejo VR (eds) Land restoration to combat desertification. Innovative approaches, quality control and project evaluation. Fundacion CEAM, Paterna, pp 13–22

    Google Scholar 

  • Vetaas OR, Ferrer-Castán D (2008) Patterns of woody plant species richness in the Iberian Peninsula: environmental range and spatial scale. J. Biogeography 35:1863–1878

    Article  Google Scholar 

  • Villanueva J (2004) Tercer Inventario Forestal Nacional (1997–2007). Comunidad de Madrid. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Williams CB (1964) Patterns in the balance of nature. Academic Press, London

    Google Scholar 

  • Williams JN, Seo CW, Thorne J, Nelson JK, Erwin S, O’brien JM, Schwartz MW (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15:565–576

    Article  Google Scholar 

  • WWF (2009) Bosques españoles. Los bosques que nos quedan propuesta de WWF para su restauración. WWF España. Ministerio de Medio Ambiente Rural y Marino, Madrid

    Google Scholar 

  • Young TP, Petersen DA, Clary JJ (2005) The ecology of restoration: historical links, emerging issues and unexplored realms. Ecol Lett 8:662–673

    Article  Google Scholar 

  • Zedler J (2005) Ecological restoration: guidance from theory. San Francisco Estuary and Watershed Science 3(2). 31 pp

    Google Scholar 

  • Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66

    Article  Google Scholar 

Download references

Acknowledgments

We thank Helios Sáinz Ollero and Rut Sánchez de Dios for kindly providing the digital shape file of the Spanish Forest Landscapes and Ramón Elena-Rosselló for providing the digital shape file of the CLATERES Territorial Classes. We also thank MARM for providing the data of the Third Spanish Forest Inventory. This work was supported by the Collaborative Project on ‘Conservation of Forest Genetic Resources’ between the Spanish Ministry of Environment and INIA (AEG06-054), and Project RTA2010-00120-C02-02. Thanks are extended to P.C. Grant, scientific editor, for the revision of the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. García del Barrio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 624 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García del Barrio, J.M., Auñón, F., Sánchez de Ron, D. et al. Assessing regional species pools for restoration programs in Spain. New Forests 44, 559–576 (2013). https://doi.org/10.1007/s11056-013-9363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-013-9363-y

Keywords

Navigation