Skip to main content
Log in

Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

This study examined foliar herbivory on 1 year-old tree saplings planted in previously abandoned fields in central Panama. Plots (15 × 15 trees) of Anacardium excelsum (Anacardiaceae), Dalbergia retusa (Fabaceae), Pachira quinata (Malvaceae), Tabebuia rosea (Bignoniaceae), and Terminalia amazonia (Combretaceae) were tested for herbivory using leaf counts and digital image analysis. Values of foliar carbon, foliar nitrogen, specific leaf area (SLA), and leaf toughness were analyzed to describe mechanical defenses and leaf nutrients on young and mature leaves of each of these species. For all five species, less than 10% of total leaf area was found to be damaged by arthropods. Significant (P-value < 0.001) differences in herbivory were found among both the tree species and the insect feeding guilds considered: chewing, skeletonizing, mining, and leaf-rolling. On mature leaves, Anacardium excelsum had the highest amount of leaf damage (3.53%) while Dalbergia retusa exhibited the lowest herbivore damage (1.72%). Tabebuia rosea had statistically significantly higher damage than other species for young leaves caused by leaf-rolling insects (4.21% rolling of 5.55% total damage). Leaf toughness was negatively correlated with SLA and foliar N. Linear regressions showed that herbivory was positively correlated with foliar N for young leaves and negatively correlated with foliar N for mature leaves. No statistically significant relationships were found between herbivory and the mechanical properties of toughness and SLA. Overall, results from this study indicate that, as young saplings, the species evaluated did not suffer high amounts of foliar herbivory in the plantation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aide TM (1993) Patterns of leaf development and herbivory in a tropical understory community. Ecology 74:455–466. doi:10.2307/1939307

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2008) Ecologically based pest management in agroforestry systems. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press/Taylor and Francis Group, Boca Raton, pp 95–108

    Google Scholar 

  • ANAM (2003) Species composition of tree plantations in Panama. Autoridad Nacional del Ambiente, Panama City

    Google Scholar 

  • Andrew NR, Hughes L (2005) Herbivore damage along a latitudinal gradient: relative impacts of different feeding guilds. Oikos 108:176–182. doi:10.1111/j.0030-1299.2005.13457.x

    Article  Google Scholar 

  • Arguedas M (2007) Plagas forestales en Costa Rica (CD-ROM). Centro de Desarrollo de Material Bibliográfico. Instituto Tecnológico de Costa Rica, Cartago

    Google Scholar 

  • Augsburger CK (1984) Light requirements of neotropical tree seedlings: a comparative study of growth and survival. J Ecol 72:777–795

    Article  Google Scholar 

  • Butterfield RP (1995) Promoting biodiversity: advances in evaluating native species for reforestation. For Ecol Manage 75:111–121. doi:10.1016/0378-1127(95)03535-I

    Article  Google Scholar 

  • Cabrera I, Segarra A (2008) A new gall-inducing species of holopothrips (Thysanoptera:Phlaeothripinae) from Tabebuia trumpet trees in the Caribbean region. Fla Entomol 91:232–236. doi:10.1653/0015-4040(2008)91[232:ANGSOH]2.0.CO;2

    Article  Google Scholar 

  • Carpenter FL, Nichols JD, Sandi E (2004) Early growth of native and exotic trees planted on degraded tropical pasture. For Ecol Manage 196:367–378. doi:10.1016/j.foreco.2004.03.030

    Article  Google Scholar 

  • Cates RG, Orians GH (1975) Successional status and the palatability of plants to generalized herbivores. Ecology 56:410–418

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335. doi:10.1146/annurev.ecolsys.27.1.305

    Article  Google Scholar 

  • Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69. doi:10.1007/s00442-002-1005-6

    Article  Google Scholar 

  • Cooper SM, Owen-Smith N (1985) Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 67:142–146. doi:10.1007/BF00378466

    Article  Google Scholar 

  • Cordero J, Barrance A, Boshier D (2003) Arboles de centroamérica: un manual para extensionistas. Oxford Forestry Institute (OFI) and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Oxford, UK, and Turrialba, Costa Rica

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas J, Poorter H (2003) Handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124

    Article  Google Scholar 

  • Craven D, Cedeño N, Mariscal E, Deago J, Wishnie MH, Hall JS (2011) Amelioration of growing conditions in a mixed species plantation of Terminalia amazonia and Nitrogen-fixing Dalbergia retusa. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science Publishers, New York

  • Craven D, Braden D, Ashton MS, Berlyn GP, Wishnie M, Dent D (2007) Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For Ecol Manage 238:335–346. doi:10.1016/j.foreco.2006.10.030

    Article  Google Scholar 

  • Dawson W, Burslem DFRP, Hulme PE (2008) Herbivory is related to taxonomic isolation, but not to invasiveness of tropical alien plants. Divers Distrib 15:141–147

    Article  Google Scholar 

  • Dominy NJ, Lucas PW, Wright SJ (2003) Mechanics and chemistry of rain forest leaves: canopy and understory compared. J Exp Bot 54:2007–2014. doi:10.1093/jxb/erg224

    Article  PubMed  CAS  Google Scholar 

  • Dominy NJ, Grubb PJ, Jackson RV, Lucas PW, Metcalfe DJ, Svenning JC, Turner IM (2008) In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann Bot 101:1363–1377. doi:10.1093/aob/mcn046

    Article  PubMed  Google Scholar 

  • Ernest KA (1989) Insect herbivory on a tropical understory tree: effects of leaf age and habitat. Biotropica 21:194–199

    Article  Google Scholar 

  • Folgarait PJ, Marquis RJ, Ingvarsson P, Braker HE, Arguedas M (1995) Patterns of attack by insect herbivores and a fungus on saplings in a tropical tree plantation. Environ Entomol 24:1487–1494

    Google Scholar 

  • Fonseca CR (1994) Herbivory and the long-lived leaves of an Amazonian ant-tree. J Ecol 82:833–842

    Article  Google Scholar 

  • Gómez M, Zelaya Y (2003) Bombacopsis quinata: beneficios actuales y potenciales para pequeños productores y limitaciones políticas en su distribución natural. Briefing note. Spanish. Centro Agronómico Tropical de Investigación y Eseñanza, Turrialba

    Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José

    Google Scholar 

  • Howlett BE, Davidson DW (2001) Herbivory on planted dipterocarp seedlings in secondary logged forests and primary forests of Sabah, Malaysia. J Trop Ecol 17:285–302. doi:10.1017/S0266467401001195

    Article  Google Scholar 

  • Janzen DH, Waterman PG (1984) A seasonal census of phenolic, fibre, and alkaloids in foliage of forest trees in Costa Rica: some factors influencing their distribution and relation to host selection by Sphingidae and Saturniidae. Biol J Linn Soc 21:439–454. doi:10.1111/j.1095-8312.1984.tb01605.x

    Article  Google Scholar 

  • Kitajima K, Poorter L (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721. doi:10.1111/j.1469-8137.2010.03212.x

    Article  PubMed  Google Scholar 

  • Kitajima K, Mulkey SS, Wright SJ (1997) Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. Am J Bot 84:702–708

    Article  PubMed  CAS  Google Scholar 

  • Kursar TA, Coley PS (2003) Convergence in defense syndrome of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949. doi:10.1016/S0305-1978(03)00087-5

    Article  CAS  Google Scholar 

  • Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defenses to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  • Lugo AE (1997) The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. For Ecol Manage 99:9–19. doi:10.1016/S0378-1127(97)00191-6

    Article  Google Scholar 

  • Maiorana VC (1981) Herbivory in sun and shade. Biol J Linn Soc 15:151–156. doi:10.1111/j.1095-8312.1981.tb00754.x

    Article  Google Scholar 

  • Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226:537–538. doi:10.1126/science.226.4674.537

    Article  PubMed  CAS  Google Scholar 

  • Marquis RJ, Diniz IR, Morais HC (2001) Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. J Trop Ecol 17:127–148. doi:10.1017/S0266467401001080

    Article  Google Scholar 

  • Martínez-Garcia C, Peña V, Ricker M, Campos A, Howe HF (2005) Restoring tropical biodiversity: leaf traits predict growth and survival of late-successional trees in early-successional environments. For Ecol Manage 217:365–379. doi:10.1016/j.foreco.2005.07.001

    Article  Google Scholar 

  • Moles A, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–526. doi:10.1034/j.1600-0706.2000.900310.x

    Article  Google Scholar 

  • Montagnini F, Piotto D (2011) Mixed plantations with native trees on abandoned pasture lands: restoring productivity, ecosystem properties and services in a humid tropical site. In: Günter S, Stimm B, Weber M, Mosandl R (eds) Silviculture in the tropics. Springer, Berlin-New York

    Google Scholar 

  • Montagnini F, González E, Porras C (1995) Mixed and pure forest plantations in the humid Neotropics: a comparison of early growth, pest damage and establishment costs. Commonw For Rev 74:306–314

    Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663. doi:10.1093/aob/mcn127

    Article  PubMed  CAS  Google Scholar 

  • Nair KSS (2007) Tropical forest insect pests: ecology, impact, and management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Neumann-Cosel L, Zimmerman B, Hall J, van Breugel M, Elsenbeer H (2011) Soil carbon dynamics under young tropical secondary forests on former pastures—a case study from Panama. For Ecol Manage 261:1625–1633. doi:10.1016/j.foreco.2010.07.023

    Article  Google Scholar 

  • Panama Canal Authority (2007) Data from Frijolito meteorological station: 1998 to 2007. http://striweb.si.edu/esp/meta_data/details_acp_rain15.htm. Accessed 15 Apr 2010

  • Parrotta JA, Turnbull JW, Jones N (1997) Introduction - Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manage 99:1–7. doi:10.1016/S0378-1127(97)00190-4

    Article  Google Scholar 

  • Pérez R, Condit R (2010) Tree Atlas of Panama. http://ctfs.arnarb.harvard.edu/webatlas/maintreeatlas.php. Accessed 15 Apr 2010

  • Piotto D, Craven D, Montagnini F, Alice F (2010) Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. New For 39:369–385. doi:10.1007/s11056-009-9177-0

    Article  Google Scholar 

  • Rasband W (2003) Image J software 1.42. National Institutes of Health. Bethesda MD, USA. http://rsb.info.nih.gov/ij/. Accessed 15 Apr 2010

  • Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Manage 232:168–178. doi:10.1016/j.foreco.2006.05.067

    Article  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB (1998) Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct Ecol 12:948–958. doi:10.1046/j.1365-2435.1998.00274.x

    Article  Google Scholar 

  • Salgado-Luarte C, Gianoli E (2010) Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution. PLoS ONE 5:e11460. doi:10.1371/journal.pone.0011460

    Article  PubMed  Google Scholar 

  • Sanson G, Read J, Aranwela N, Clissold F, Peeters P (2001) The measurement of leaf biomechanical properties in herbivory: opportunities, problems and procedures. Austral Ecol 26:535–546. doi:10.1046/j.1442-9993.2001.01154.x

    Article  Google Scholar 

  • Santana DLQ, Burckhardt D (2001) A new triozid pest (Hemiptera, Psylloidea, Triozidae) on ornamental Trumpet Trees (Tabebuia spp., Bignoniaceae). Rev Suisse de Zool 108:541–550

    Google Scholar 

  • Speight MR, Wylie FR (2001) Insect pests in tropical forestry. CABI, Oxon

    Google Scholar 

  • Straus-Debenedetti S, Berlyn GP (1994) Leaf anatomical responses to light in five tropical Moraceae of different successional status. Am J Bot 81:1582–1591

    Article  Google Scholar 

  • Sullivan JJ (2003) Density-dependent shoot-borer herbivory increases the age of first reproduction and mortality of neotropical tree saplings. Oecologia 136:96–106. doi:10.1007/s00442-003-1233-4

    Article  PubMed  Google Scholar 

  • Unsicker SB, Mody K (2005) Influence of tree species and compass bearing on insect folivary of nine common tree species in the West African savanna. J Trop Ecol 21:227–231. doi:10.1017/20266467404002196

    Article  Google Scholar 

  • van Breugel M, Hall JS (2008) Experimental design of the ‘Agua Salud’ Native Timber Species Plantation 2008. Unpublished Typescript Report. http://biogeodb.stri.si.edu/bioinformatics/sigeo/aguasalud/data/docs/Design_Native%20Species_Plantations_05052008.pdf. Accessed 15 Apr 2010

  • van Breugel M, Hall JS, Craven DJ, Dent DH, Wishnie MH, Deago J, Mariscal E, Ibarra D, Cedeño N, Park A, Ashton MS (2011) Early growth and survival of 49 tropical tree species across sites differing in soil fertility and rainfall in Panama. For Ecol Manage 261:1580–1589. doi:10.1016/j.foreco.2010.08.019

    Article  Google Scholar 

  • Vosso J (ed) (2004) Tropical tree seed manual. USDA Forest Service. http://www.rngr.net/Publications/ttsm. Accessed 15 Apr 2010

  • Windsor DM (1990) Climate and moisture variability in a tropical forest: long-term records from Barro Colorado Island. Panama, Washington, DC

    Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. For Ecol Manage 243:39–49. doi:10.1016/j.foreco.2007.02.001

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted with the institutional and financial support of the Yale School of Forestry and Environmental Studies, the Smithsonian Tropical Research Institute, the Tropical Resources Institute at Yale University, the Yale Council for Latin American and Iberian Studies, and the HSBC Climate Partnership. We thank Daniela Weber, Federico Davis, as well as other members of the Agua Salud Project and STRI community for logistical support. Additionally, we would like to thank Carlos Díaz and Serena Sánchez for their help in the field and laboratory. Much appreciation goes to Mark Ashton and Elaine Hooper for their revisions and improvements on this manuscript. Finally, we would like to thank Adriane Cromer, Michele Abbene, and Johannes Ransijn for their invaluable support during data collection in Panama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian S. Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, G.S., Montagnini, F., Berlyn, G.P. et al. Foliar herbivory and leaf traits of five native tree species in a young plantation of Central Panama. New Forests 43, 69–87 (2012). https://doi.org/10.1007/s11056-011-9267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-011-9267-7

Keywords

Navigation