Skip to main content
Log in

Relationship of wood composition to growth traits of selected open-pollinated families of Eucalyptus urophylla from a progeny trial in Vietnam

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Lignin and cellulose contents and wood basic density were related to diameter at breast height (DBH) in six fast-growing and five slow-growing families from a combined progeny test and seedling seed orchard of Eucalyptus urophylla grown for 10 years in northern Vietnam. The mean cellulose content of the fast-growing families was significantly higher than that of the slow growing-families (40.0 and 37.1%, respectively), and for individual trees cellulose content was significantly correlated phenotypically with DBH. Wood basic density was significantly lower in the fast-growing group than in the slow-growing group (0.506 and 0.535 g cm−3, respectively), and was significantly negatively correlated phenotypically with DBH. The lignin contents were not significantly different between groups. Cellulose content and wood basic density were not correlated. The main conclusion is that there is no obstacle to combining high growth rate with high cellulose content, for plantation of forests intended mainly for pulpwood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apiolaza LA, Raymond CA, Yeo BJ (2005) Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genet 54:160–166

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Botelho GML, Santana MAE, MVdS Alves (2000) Chemical properties, natural durability and treatability of six eucalyptus species planted in the Distrito Federal. Rev Árvore 24:115–121

    Google Scholar 

  • Cullen LE, MacFarlane C (2005) Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiol 25:563–569

    CAS  PubMed  Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Oxford University Press, Oxford

    Google Scholar 

  • Fardim P, Durán N (2004) Retention of cellulose, xylan and lignin in kraft pulping of eucalyptus studied by multivariate data analysis: influences on physicochemical and mechanical properties of pulp. J Braz Chem Soc 15:514–522

    Article  CAS  Google Scholar 

  • Gill GP, Brown GR, Neale DB (2003) A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnol J 1:253–258

    Article  CAS  PubMed  Google Scholar 

  • Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Halpin C (2004) Investigating and manipulating lignin biosynthesis in the postgenomic era. Adv Bot Res 41:63–106

    Google Scholar 

  • Iiyama K, Wallis AFA (1998) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22:271–280

    Article  Google Scholar 

  • Kawaoka A, Nanto K, Ishii K, Ebinuma H (2006) Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genet 55:269–277

    Google Scholar 

  • Kien ND, Jansson G, Harwood C, Thinh HH (2009a) Genetic control of growth and form in Eucalyptus urophylla S. T. Blake in northern Vietnam. J Trop For Sci 21:50–65

    Google Scholar 

  • Kien ND, Quang TH, Jansson G, Harwood C, Clapham D, von Arnold S (2009b) Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla. Ann For Sci 66:711. doi:10.1051/forest/2009064

    Google Scholar 

  • Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135:2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Kube PD, Raymond CA, Banham PW (2001) Genetic parameters for diameter, basic density, cellulose content and fibre properties for Eucalyptus nitens. For Genet 8:285–294

    Google Scholar 

  • Miranda I, Pereira H (2002) Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Ann For Sci 59:283–291

    Article  Google Scholar 

  • Olesen PO (1971) Water displacement method. A fast and accurate method to determine green volume of wood samples. For Tree Improv 3:1–23

    Google Scholar 

  • Pandey KK, Piman AJ (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and fourier transform infrared spectroscopy. J Polym Sci A Polym Chem 42:2340–2346

    Article  CAS  Google Scholar 

  • Poke FS, Vaillancourt RE, Elliott RC, Reid JB (2003) Sequence variation in two lignin biosynthesis genes, cinnamomyl CoA reductase (CCR) and cinnamyl alcohol dehydrogennase 2 (CAD2). Mol Breeding 12:107–118

    Article  CAS  Google Scholar 

  • Poke FS, Potts PM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractive and decay in Eucalyptus globus. Ann For Sci 63:813–821

    Article  CAS  Google Scholar 

  • Queiroz SCS, Gomide JL, Colodette JL, RCd Oliveira (2004) Effect of wood basic density on kraft pulp quality of hybrid Eucalyptus grandis W. Hill ex Maiden × Eucalyptus urophylla S.T. Blake clones. Rev Árvore 28:901–909

    Article  Google Scholar 

  • Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531

    Article  Google Scholar 

  • Rodrigues J, Faix O, Pereira H (1998) Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforsch 52:46–50

    Article  CAS  Google Scholar 

  • Rodrigues J, Faix O, Pereira H (1999) Improvement of the acetyl bromide method for lignin determination within large scale screening programmes. Holz Roh-Werkstoff 57:341–345

    Article  CAS  Google Scholar 

  • Rogers LA, Campbell MMC (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:17–30

    Article  CAS  Google Scholar 

  • Schimleck LR, Rezende G, Demuner BJ, Downes GM (2006) Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J 59:231–236

    CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    Article  CAS  PubMed  Google Scholar 

  • Tai ND (1994) Preliminary results of provenance trials for Eucalyptus urophylla in central areas of northern Vietnam. PhD thesis (Vietnamese)

  • Terdwongworakul A, Punsuwan V, Thanapase W, Tsuchikawa S (2005) Rapid assessment of wood chemical properties and pulp yield of Eucalyptus camaldulensis in Thailand tree plantations by near infrared spectroscopy for improving wood selection for high quality pulp. J Wood Sci 51:167–171

    Article  CAS  Google Scholar 

  • Valerio L, Carter D, Rodrigues JC, Tournier V, Gominho J, Marque C, Boudet AM, Maunders M, Pereira H, Teulieres C (2003) Down regulation of cinnamyl alcohol dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Mol Breeding 12:157–167

    Article  CAS  Google Scholar 

  • Wadenback J, Clapham D, Gellerstedt G, von Arnold S (2004) Variation in content and composition of lignin in young wood of Norway spruce. Holzforsch 58:107–115

    Article  Google Scholar 

  • Wallis AFA, Weame RH, Wright PJ (1997) New approaches to the rapid analysis of cellulose in wood. Proceedings Intenational symbosium on wood and pulping chemistry. Montreal C3-1–C3-4 C3-1–C3-4

  • Wei X, Borralho NMG (1997) Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in south east China. Silvae Genet 46:245–250

    Google Scholar 

  • Wilkes J (1984) The influence of rate of growth on the density and heartwood extractives content of Eucalyptus species. Wood Sci Technol 18:113–120

    Google Scholar 

  • Zobel BJ, Sprague JR (1998) Genetics of wood production. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The progeny trial used in this study was established under the FAO’s Regional Project RAS/91/004 (FORTIP), supported by AusAID. The authors thank the staffs of the Research Centre for Forest Tree Improvement in Hanoi and Ba Vi station who worked on the establishment and maintenance of the progeny trials, and assisted in tree measurement, sample collection, and determination of cellulose content and wood density. We also thank STFI-Packforsk AB, Stockholm, Sweden for helping in primary lignin analysis experiments. The study was supported by the Swedish International Development Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Ho Quang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quang, T.H., Kien, N.D., von Arnold, S. et al. Relationship of wood composition to growth traits of selected open-pollinated families of Eucalyptus urophylla from a progeny trial in Vietnam. New Forests 39, 301–312 (2010). https://doi.org/10.1007/s11056-009-9172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-009-9172-5

Keywords

Navigation