Skip to main content
Log in

Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Site productivity of the hybrid poplar clone Brooks6 was predicted using soil and site information from 6, 4-year-old plantations in north-east Alberta. Predictions were made at both the local and microsite scales. Percent sand (R 2 = 0.352, P = 0.001) was the best single predictor of hybrid poplar productivity, showing a curved relationship. Soil pH also showed a curved but weaker relationship with hybrid poplar productivity (R 2 = 0.133, P = 0.100). Maximum tree productivity occurred at sand contents between 55 and 70% and pH values near 6. Other variables, including foliar nutrient concentrations, foliar δ13C, electrical conductivity, depth of the A horizon and total chemistry of the soil, were also related to hybrid poplar productivity at the local and microsite scales. However, all of these variables were correlated to either soil texture (percent sand) or pH. At the microsite scale within plantations, percent sand was the most important predictor of tree productivity and explained more than 50% of the variability within plantations, although the relationship varied by plantation. In plantations with fine textures, sandier microsites were associated with increased growth while in sandy plantations, finer textured microsites were more productive. As a whole, the growth of the hybrid poplar clone Brooks6 appears to be mostly influenced by a combination of soil water and nutrient availability, the former being impacted by soil texture and the latter being governed by soil pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bowersox TW, Ward WW (1977) Soil fertility, growth, and yield of young hybrid poplar plantations in central Pennsylvania. For Sci 23:463–469

    Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soil, 11th edn. Prentice Hall, New Jersey, p 740

    Google Scholar 

  • Carmean WH (1975) Forest site quality evaluation in the United States. Adv Agronomy 27:209–269

    Article  Google Scholar 

  • Carmean WH (1996) Site-quality evaluation, site-quality maintenance, and site-specific management for forest land in northwest Ontario. Northwest Science and Technology Unit Technical Report TR-105, Ontario Ministry of Natural Resources, Thunder Bay, Ontario, 121 pp

  • DesRochers A, van den Driessche R, Thomas BR (2006) NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. For Ecol Manage 232:216–225

    Article  Google Scholar 

  • DesRochers A, van den Driessche R, Thomas BR (2007) The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones. Can J Bot 85:1046–1057

    Article  CAS  Google Scholar 

  • Ericsson T, Rytter L, Linder S (1992) Nutritional dynamics and requirements of short rotation forests. In: Mitchell CP, Ford-Robertson JB, Hinckley T, Sennerby-Forsse L (eds) Ecophysiology of short rotation forest crops. Elsevier Applied Science, London

    Google Scholar 

  • Hansen EA (1994) A guide for determining when to fertilize hybrid poplar plantations. North Central Forest Experiment Station Research Paper NC-319, US Dept. of Agriculture, St. Paul, Minnesota, 7 pp

  • Hansen EA, McLaughlin RA, Pope PE (1988) Biomass and nitrogen dynamics of hybrid poplar on two different soils: implications for fertilization strategy. Can J For Res 18:223–230

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management, 7th edn. Prentice Hall, New Jersey, p 528

    Google Scholar 

  • Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships. For Ecol Manage 121:41–55

    Article  Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2005) Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can J For Res 35:610–622

    Article  Google Scholar 

  • Horsley SB, Long RP, Bailey SW, Hallett RA, Hall TJ (2000) Factors associated with the decline disease of sugar maple on the Allegheny Plateau. Can J For Res 30:1365–1378

    Article  CAS  Google Scholar 

  • Houle D, Tremblay S, Ouimet R (2007) Foliar and wood chemistry of sugar maple along a gradient of soil acidity and stand health. Plant Soil 300:173–183

    Article  CAS  Google Scholar 

  • Joss BN, Hall RJ, Sidders DM, Keddy TJ (2007) Fuzzy-logic modeling of land suitability for hybrid poplar across the Prairie Provinces of Canada. Env Mon Assess 141:79–96

    Article  Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Phys 24:447–460

    CAS  Google Scholar 

  • Lu E-Y, Sucoff EI (2001) Responses of quaking aspen (Populus tremuloides) seedling to solution calcium. Can J For Res 31:123–131

    Article  Google Scholar 

  • Martin JL, Gower ST (2006) Boreal mixedwood tree growth on contrasting soils and disturbance types. Can J For Res 36:986–995

    Article  Google Scholar 

  • McKenney DW, Yemshanov D, Fox G, Ramlal E (2004) Cost estimates for carbon sequestration from fast growing poplar plantations in Canada. For Policy Econ 6:345–358

    Google Scholar 

  • McNulty SG, Swank WT (1995) Wood δ13C as a measure of annual basal area growth and soil water stress in a Pinus strobus forest. Ecology 76:1581–1586

    Article  Google Scholar 

  • Messier C, Bigué B, Bernier L (2003) Using fast-growing plantations to promote forest ecosystem protection in Canada. Unasylva 54:59–63

    Google Scholar 

  • Ontario Ministry of Natural Resources (1991) A grower’s guide to hybrid poplar. Ontario Ministry of Natural Resources Queen’s Printer, Toronto, p 148

    Google Scholar 

  • Paré D, Bergeron Y, Longpré M-H (2001) Potential productivity of aspen cohorts originating from fire, harvesting, and tree-fall gaps on two deposit types in northwestern Quebec. Can J For Res 31:1067–1073

    Article  Google Scholar 

  • Pinno BD, Bélanger N (2009) Competition control in juvenile hybrid poplar plantations across a range of site productivities in central Saskatchewan. New For 37:213–225

    Google Scholar 

  • Reich PB, Grigal DF, Aber JA, Gower ST (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335–347

    Article  Google Scholar 

  • Schroeder W, Silim S, Fradette J, Patterson J, de Gooijer H (2003) Detailed site analysis and mapping of agroforestry potential in the northern agricultural zone of Saskatchewan. Forest Development Fund final report. Saskatchewan Forest Centre, Prince Albert

    Google Scholar 

  • Sedjo RA (1999) The potential of high-yield plantation forestry for meeting timber needs. New For 17:339–359

    Google Scholar 

  • Shock CC, Feibert EBG, Seddigh M, Saunders LD (2002) Water requirements and growth of irrigated hybrid poplar in a semi-arid environment in eastern Oregon. West J Appl For 17:46–53

    Google Scholar 

  • Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1995) 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Aust J Plant Physiol 22:51–55

    Article  Google Scholar 

  • Ung CH, Bernier PY, Raulier F, Fournier RA, Lambert MC, Regniere J (2001) Biophysical site indices for shade tolerant and intolerant boreal species. For Sci 47:83–95

    Google Scholar 

  • van Oosten C (2006) Hybrid poplar crop manual for the Prairie Provinces. Forest Development Fund final report. Saskatchewan Forest Centre, Prince Albert, p 232

    Google Scholar 

  • Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127:476–486

    Article  Google Scholar 

  • Wittwer RF, Immel MJ (1980) Chemical composition of five deciduous tree species in four-year-old, closely spaced plantations. Plant Soil 54:461–467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their constructive comments. A special thanks to M. Emigh for his valuable help in the field and laboratory. We also thank J. Ramsum from Alberta-Pacific Forest Industries Inc. (Al-Pac) for providing site histories and helping us access the plantations and G. Keating of the McGill University Center for Trace Element Analysis Laboratory for conducting XRF analyses on our soil samples. This study was made possible by financial support from the Saskatchewan Forest Centre (now ForestFirst), Al-Pac and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bélanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinno, B.D., Thomas, B.R. & Bélanger, N. Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics. New Forests 39, 89–103 (2010). https://doi.org/10.1007/s11056-009-9157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-009-9157-4

Keywords

Navigation