Skip to main content

Advertisement

Log in

Naturally revegetated forest governed by mudflow induced sediment heterogeneity

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

We investigated an upstream area of the 1926 Taisho Mudflow that occurred at Mount Tokachi, a volcano in central Hokkaido, Japan, to clarify the relationship between natural forest succession and mudflow-induced sediment characteristics. The study area was divided into three parts, i.e., undisturbed, deposition, and scoured areas, based on disturbance regimes. The deposition area was further divided into three different forest stands for a final total of five forest stand types. We assumed that the mudflow regimes created sediment edaphic heterogeneity and undisturbed and island forests supplied seeds for natural revegetation. The undisturbed forest stand comprised pioneer species, whereas a mosaic forest consisting of almost pure stands characterized by Betula ermanii and Picea glehnii developed in the mudflow. This indicates that each plant species has a characteristic ability to establish and adapt initially and later develop into a mosaic forest according to sediment edaphic conditions, particularly depth, grain size distribution, and water and nutrient gradients. The differences in forest species composition and a 30-year time lag between the development of forest stands at the distal edges and the center explain how the cross-sectional sediment edaphic heterogeneity created by the mudflow regimes affected succession and forest development. Furthermore, plants are specific to sediment depth and texture, as well as moisture and nutrient availability, which play important roles in their growth and development; thus, forest stands with contrasting species and age structures developed in the mudflow.

Zusammenfassung

Der obere Bereich des 1926 abgegangenen Schlammstroms Taisho, der in Zentralhokkaido im nördlichen Japan gelegen ist, wurde untersucht, um die Beziehung zwischen natürlicher Pflanzensukzession und der durch einen Schlammstrom erzeugten Sedimentheterogenität zu klären. Der Wald im Untersuchungsgebiet wurde anhand des Prozessregimes in einen ungestörten Bereich, das Anrissgebiet und einen Ablagerungsbereich gegliedert. Der Ablagerungsbereich wurde in drei Waldbestände eingeteilt, so dass sich insgesamt fünf Bestandstypen ergaben. Es wurde angenommen, dass der Schlammstrom edaphische Heterogenität verursachte und dass sowohl der ungestörte als auch der inselförmige Waldbestand Samen für die natürliche Wiederbesiedlung lieferte. Der ungestörte Waldbestand setzte sich aus verschiedenen Pionierarten zusammen, wobei sich auf dem Schlammstrom ein Waldmosaik aus fast reinen Betula ermanii und Picea glehnii Beständen entwickelte. Das deutet darauf hin, dass jede Pflanzenart ein bestimmtes Vermögen hat sich erst anzusiedeln und sich dann später in ein Waldmosaik zu entwickeln, was von den edaphischen Bedingungen, insbesondere Bodenmächtigkeit, Korngrößenverteilung, und Wasser- und Nährstoffgradienten, abhängt. Die unterschiedliche Artenzusammensetzung des Walds und eine 30-jährige Entwicklungsverzögerung der Waldbestände im mittleren Bereich im Vergleich zum Randbereich verdeutlichen, wie die durch den Schlammstrom erzeugte edaphischen Heterogenität die Sukzession und Waldentwicklung beeinflusste. Zudem hängen Pflanzen sowohl von Sedimentmächtigkeit und—textur als auch vom Feuchtigkeits- und Nährstoffangebot ab, was eine wichtige Rolle für deren Wachstum und Entwicklung spielt; dementsprechend entwickelten sich Waldbestände mit unterschiedlichen Arten und Alter auf dem Schlammstrom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams BA, Dale HV (1987) Vegetation succession following glacial and volcanic disturbances in the Cascade range of Washington, USA. In: Bilderback ED (eds) Mount St. Helens, 1980. University of California Press, Berkeley, pp 70–147

    Google Scholar 

  • Adikari Y, Kikuchi S, Nakamura F (2000) Effects of the physical and chemical characteristics of sediment on vegetation in a volcanic mudflow scar. Trans Jpn Geomorpholog Union 21(2):193–207

    Google Scholar 

  • Blandon DMZ, Satoh F, Matsuda K, Sasa K, Igarashi T (1994) The mineral condition of soils and tree species in serpentine and non-serpentine areas of northern Hokkaido. Res Bull Exp For Hokkaido Univ 51(1):1–13

    CAS  Google Scholar 

  • del Moral R, Bliss LC (1993) Mechanisms of primary succession: insights resulting from the eruption of Mount St Helens. Adv Ecol Res 24:1–66

    Article  Google Scholar 

  • del Moral R, Clampitt AC (1985) Growth of native plant species on recent volcanic substrates from Mount St Helens. Am Midl Nat 114(2):374–383

    Article  Google Scholar 

  • George E, Kircher S, Schwarz P, Tesar A, Seith B (1999) Effect of varied soil nitrogen supply on growth and nutrient uptake of young Norway spruce plants grown in a shaded environment. J␣Plant Nutr Soil Sci 162:301–307

    Article  CAS  Google Scholar 

  • Japan Weather Association (1991–2001) Hokkaido no Kisho 30(1)–39(12) (In Japanese)

  • Klute A (ed) (1986) Methods of soil analysis. Part 1—physical and mineralogical methods, 2nd edn. Monograph Number 9 ASA and SSSA Inc., Madison Wisconsin

    Google Scholar 

  • Kubota Y, Konno Y, Hiura T (1994) Stand structure and growth patterns of understory trees in a coniferous forest, Taisetuzan National Park, northern Japan. Ecol Res 9:333–341

    Article  Google Scholar 

  • Kubota Y (1995) Effects of disturbance and size structure on the regeneration process in a sub-boreal coniferous forest, northern Japan. Ecol Res 10:135–142

    Article  Google Scholar 

  • Malik V, Timmer VR (1996) Growth, nutrient dynamics, and interspecific competition of nutrient-loaded black spruce seedlings on a boreal mixedwood site. Can J For Res 26:1651–1659

    Google Scholar 

  • Maruyama Y. (1996) Water potential of main tree species in boreal forest. Northern Forest Jpn 48(11):5–8 (in Japanese)

    Google Scholar 

  • Mitchell MJ, David MB, Fernandez IJ, Fuller RD, Nadelhoffer K, Rustad LE, Stam AC (1994) Response of burried mineral soil bags to experimental acidification of forest ecosystem. Soil Sci Soc Am J 58:556–563

    Article  CAS  Google Scholar 

  • Murai I (1960) On the mudflow of the 1926 eruption of volcano Tokachi-dake, Central Hokkaido, Japan. Bull Earthq Res Inst 38:55–70

    Google Scholar 

  • Murano Y (1984) On the Tokachidake mudflow. Shin Sabo 59:14–23

    Google Scholar 

  • Nakashizuka T, Iida S, Suzuki W, Tanimoto T (1993) Seed dispersal and vegetation development on a debris avalanche on the Ontake volcano, Central Japan. J Veg Sci 4:537–542

    Article  Google Scholar 

  • Rhoton FE, Lindbo DL (1997) A soil depth approach to soil quality assessment. J Soil Water Cons 52(1):66–72

    Google Scholar 

  • Sakai A, Ohsawa M (1993) Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan. Ecol Res 8:47–56

    Article  Google Scholar 

  • Sakurai A, Araya T, Yanai S (1994) Natural and managed forest recovery after a volcanic eruption. J␣Jpn Soc Rev Technol 19(3):147–158 (in Japanese with English summary)

    Google Scholar 

  • Soil Survey Staff (1987) Keys to soil taxonomy. Department of Agronomy Bradfield Hall Cornell University, Ithaca NY

    Google Scholar 

  • SPSS 6.1 for Macintosh, Student version 1995, Prentice-Hall, Inc. Simon & Schuster, A Viacom Company, Upper Saddle River, NJ 07458

  • Tateno M, Chaplin III FS (1997) The logic of carbon and nitrogen interactions in terrestrial ecosystems. Am Nat 149(4):723–744

    Article  Google Scholar 

  • Tsuyuzaki S (1995) Vegetation recovery pattern in early volcanic succession. J Plant Res 108: 241–248

    Article  Google Scholar 

  • Wang R Jian, Hawkins BCD, Letchford Tony (1998) Relative growth rate and biomass allocation of paper birch (Betula papyrifera) populations under different soil moisture and nutrient regimes. Can J For Res 28:44–55

    Article  Google Scholar 

  • Yajima T, Nakamura F, Simizu O, Shibuya M (1998) Forest recovery after disturbance by the 1926␣mudflow at Mount Tokachi, Hokkaido, Japan. Res Bull Hokkaido Univ Forest 55(1):216–228

    Google Scholar 

  • Yoshioka K (1966) Development and recovery of vegetation since the 1929 eruption of Mt. Komagatake, Hokkaido. Ecol Rev 16(4):271–292

    Google Scholar 

  • Zarin JD, Johnson HA, Thomas MS (1998) Soil organic carbon and nutrient status in old-growth montane coniferous forest watershed, Isla Chiloe, Chile. Plant Soil 201:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Hokkaido Asahikawa Public Works Office in Furano, who assisted us during our field research and also provided reference materials, which included very important complementary information necessary for completing this study. Thank to Thomas Parkner of Hokkaido University for helping with the German translation. This research was funded by the Japan Society for the Promotion of Science and the Japanese Ministry of Education, Culture, Sports, Science and Technology (Grant No. 14-2219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoganath Adikari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adikari, Y., Kikuchi, Si., Makinow, . et al. Naturally revegetated forest governed by mudflow induced sediment heterogeneity. New Forests 33, 53–65 (2007). https://doi.org/10.1007/s11056-006-9013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-006-9013-8

Keywords

Navigation