Skip to main content
Log in

Brain Plasticity: Limitations and Possibilities

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present a brief review of the biological limitations, associated with regeneration of the brain and transplantation of stem cells into it, as well as factors influencing brain plasticity after injury, including epigenetic regulatory mechanisms. Noninvasive transcranial microelectrostimulation provides a potential multisystems stimulus for the endogenous mechanisms of recovery of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Kharchenko and M. N. Klimenko, “Brain plasticity and regeneration,” Nevrol. Zh., 11, No. 6, 37–45 (2006).

    Google Scholar 

  2. S. C. Cramer, M. Sur, B. H. Dobkin, et al., “Harnessing neuroplasticity for clinical applications,” Brain, 134, No. 6, 1591–1609 (2011), doi: https://doi.org/10.1093/brain/awr039.

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. T. Viscomi and M. Molinari, “Remote neurodegeneration: multiple actors for one play,” Mol. Neurobiol., 50, No. 2, 368–389 (2014), doi: https://doi.org/10.1007/s12035-013-8629-x.

    Article  PubMed  CAS  Google Scholar 

  4. J. Graff, D. Kim, M. M. Dobbin, and Tsai Li-Huei, “Epigenetic regulation of gene expression in physiological and pathological brain processes,” Physiol. Rev., 91, No. 2, 603–649 (2011), doi: https://doi.org/10.1152/physrev.00012.2010.

    Article  PubMed  CAS  Google Scholar 

  5. G. Martino, S. Pluchino, L. Bonfanti, and M. Schwartz, “Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells,” Physiol. Rev., 91, No. 4, 1281–130 (2011), doi: https://doi.org/10.152/physrev.00032.2010.

  6. P. Rakic, “Evolution of the neocortex: perspective from developmental biology,” Nat. Rev. Neurosci., 10, No. 10, 724–735 (2009), doi: https://doi.org/10.1038/nrn2719.

  7. S. C. Cramer, “Clinical issues in animal models of stroke and rehabilitation,” ILAR J., 44, No. 2, 83–84 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. D. Van Essen, K. Ugurbil, E. Auerbach, et al., “The human connectome project: a data acquisition perspective,” Neuroimage, 62, No. 4, 2222–2231 (2012), doi: https://doi.org/10.1016/j.neuroimage.2012.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Working Group, Interim Report, National Institutes of Health, September 16, 2013, http://acd.od.nih.gov/brain.htm.

  10. M. P. Goldberg and B. R. Ransom, “New light on white matter,” Stroke, 34, No. 2, 330–332 (2003).

    Article  PubMed  Google Scholar 

  11. P. A. Carpentier and T. D. Palmer, “Immune influence on adult neural stem cell regulation and function,” Neuron, 64, No. 1, 79–92 (2009), doi: https://doi.org/10.1016/j.neuron.2009.08.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. H. L. Mathews and L. W. Janusek, “Epigenetics and psychoneuroimmunology: mechanisms and models,” Brain Behav. Immun., 25, No. 1, 25–39 (2011), doi: https://doi.org/10.1016/j.bbi.2010.08.009.

    Article  PubMed  Google Scholar 

  13. J. A. Arai and L. A. Feig, “Long-lasting and transgenerational effects of an environmental enrichment on memory formation,” Brain Res. Bull., 85, No. 1–2, 30–35 (2011), doi: https://doi.org/10.1016/j.brainresbull.2010.11.003.

    Article  PubMed  Google Scholar 

  14. J. L. Rinn and H. Y. Chang, “Genome regulation by long noncoding RNAs,” Annu. Rev. Biochem., 81, 145–166, doi: https://doi.org/10.1146/annurevbiochem-051410-092902.

  15. I. A. Qureshi and M. F. Mehler, “Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease,” Nat. Rev. Neurosci., 13, No. 8, 528–541, doi: https://doi.org/10.1038/nrn3234.

  16. Y. Tay, J. Rinn, and P. P. Pandolfi, “The multilayered complexity of ceRNA crosstalk and competition,” Nature, 505, No. 7483, 344–352 (2014), doi: https://doi.org/10.1038/nature12986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. M. A. Moskowitz, E. H. Lo, and C. Iadecola, “The science of stroke: mechanisms in search of treatments,” Neuron, 67, No. 2, 181–198 (2010), doi: https://doi.org/10.1016/j.neuron.2010.07.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. T. G. Liman and M. Endres, “New vessels after stroke: postischemic neovascularization and regeneration,” Cerebrovasc. Dis., 33, No. 5, 492–499 (2012), doi: https://doi.org/10.1159/000337155.

    Article  PubMed  CAS  Google Scholar 

  19. A. Pascual-Leone and R. H. Hamilton, “The metamodal organization of the brain,” Prog. Brain Res., 134, 427–445 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. E. P. Kharchenco, “Transcranial microelectrostimulation induces rapid mechanisms of plasticity in the brain,” Dok. Akad. Nauk, 378, No. 3, 421–423 (2001).

    Google Scholar 

  21. M. M. Ali, K. K. Sellers, and F. Frohlich, “Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance,” J. Neurosci., 33, No. 27, 11262–11275 (2013), doi: https://doi.org/10.1523/JNEUROSCI.5867-12.2013.

    Article  PubMed  CAS  Google Scholar 

  22. S. Bestmann and E. Feredoes, “Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present and future,” Ann. N. Y. Acad. Sci., 1296, No. 1, 11–30 (2013), doi: https://doi.org/10.1111/nyas.12110.

    Article  PubMed  PubMed Central  Google Scholar 

  23. K. E. Stephan, J. J. Riera, G. Deco, and B. Horwitz, “The brain connectivity workshops: moving the frontiers of computational systems neuroscience,” Neuroimage, 42, No. 1, 1–9 (2008), doi: https://doi.org/10.1016/j.neuroimage.2008.04.167.

    Article  PubMed  PubMed Central  Google Scholar 

  24. S. S. Kollias, H. Alkadhi, T. Jaermann, et al., “Identification of multiple nonprimary motor cortical areas with simple movements,” Brain Res. Rev., 36, No. 2–3, 185–195 (2001).

  25. M. Hallett, “Plasticity of the human motor cortex and recovery from stroke,” Brain Res. Rev., 36, No. 2–3, 169–174 (2001).

  26. R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, 111, No. 4, 761–773 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. J. N. Sanes and J. P. Donoghue, “Plasticity and primary motor cortex,” Annu. Rev. Neurosci., 23, 393–415 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. M. Ning, M. Lopez, J. Cao, et al., “Application of proteomics to cerebrovascular disease,” Electrophoresis, 33, No. 24, 3582–3597 (2012), doi: https://doi.org/10.1002/elps.201200481.

    Article  PubMed  CAS  Google Scholar 

  29. E. Burke and S. C. Cramer, “Biomarkers and predictors of restorative therapy effects after stroke,” Curr. Neurol. Neurosci. Rep., 13, No. 2, 329–338 (2013), doi: https://doi.org/10.1007/s11910-012-0329-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. A. Quaegebeur, C. Lange, and P. Carmeliet, “The neurovascular link in health and disease: molecular mechanisms and therapeutic implications,” Neuron, 71, No. 3, 406–424 (2011), doi: https://doi.org/10.1016/j.neuron.2011.07.013.

    Article  PubMed  CAS  Google Scholar 

  31. C. Grefkes and G. R. Fink, “Connectivity-based approaches in stroke and recovery of function,” Lancet Neurol., 13, No. 2, 206–216 (2014), doi: https://doi.org/10.1016/S1474-4422(13)70264-3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kharchenko.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 117, No. 1, Iss. 2, For the Practicing Doctor, pp. 8–13, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchenko, E.P., Tel’nova, M.N. Brain Plasticity: Limitations and Possibilities. Neurosci Behav Physi 48, 603–607 (2018). https://doi.org/10.1007/s11055-018-0606-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0606-4

Keywords

Navigation