Skip to main content

Advertisement

Log in

Assessment of the Parameters of Cognitive Potentials in Adolescent Northerners in Health and Developmental Delays

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Components of event-related potentials (ERP) were studied using an active sound signal discrimination task in northern schoolchildren aged 12–18 years with impaired mental development and learning difficulties (IQ 65 ± 4) and without mental developmental impairments (IQ 90 ± 10). The peak latency of the P300 component in the central and parietal areas of the cortex on perception and discrimination of target sound stimuli was greater in northern children with impaired mental development (Cz 370 ± 36 msec, 8.8 ± 4.1 μV; Pz 375 ± 39 msec, 10.2 ± 3.3 μV) as compared with their normally developing peers (339 ± 28 msec, 10.4 ± 3.0 μV; 340 ± 35 msec, 12.2 ± 2.2 μV, respectively). Negative correlations were found between cognitive abilities, the accuracy and speed of information processing in an attention task, and the latency of the P300 component, with positive correlations with the amplitude of the P3 component for measures of attention. The spatial, temporal, and amplitude characteristics of ERP in adolescents with impaired mental development reflect the functional incompetence or immaturity of the hierarchical organization of the system processing and discriminating information arriving in the brain and requiring concentration of attention and decision-taking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Aleshina, N. N. Koberskaya, and I. V. Damulin, “Cognitive P300 event-related potentials: methodology, experience of use, and clinical significance,” Zh. Nevrol. Psikhiat., 8, 77–84 (2009).

    Google Scholar 

  2. A. D. Andreeva and A. M. Prikhozhan, “A method for the diagnosis of learning motivation and emotional attitude to learning in intermediate and higher school classes,” Psikhol. Diagnostika, 1, 33–38 (2006).

    Google Scholar 

  3. V. P. Rozhkov, E. G. Sergeeva, and S. I. Soroko, “Age-related dynamics of event-related potentials in the brain in involuntary and voluntary attention to deviant stimuli in northern schoolchildren,” Ros. Fiziol. Zh., 94, No. 11, 1240–1258 (2008).

    CAS  Google Scholar 

  4. E. M. Rutman, Event-Related Potentials in Psychology and Psychophysiology, Nauka, Moscow (1979).

    Google Scholar 

  5. S. I. Soroko, V. P. Rozhkov, and S. S. Bekshaev, “Characteristics of seasonal rearrangements in the central regulatory mechanisms in northern children with different levels of social risk,” Ros. Fiziol. Zh., 99, No. 12, 1435–1449 (2013).

    CAS  Google Scholar 

  6. Structural-Functional Organization of the Developing Brain, Nauka, St. Petersburg, Leningrad (1990).

  7. C. Shagass, Evoked Brain Potentials in psychiatry [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  8. L. A. Yasyukova, Optimization of Learning and Development in Children with Minimal Mental Dysfunction. The Toulouse-Piéron Test: Methodological Guidelines, IMATON, St. Petersburg (2007).

    Google Scholar 

  9. H. U. Amin, A. S. Malik, N. Kamel, et al., “P3 correlates with learning and memory abilities and fluid intelligence,” J. Neuroeng. Rehabil., 12, 87 (2015), doi: https://doi.org/10.1186/s12984-015-0077-6.

  10. R. Bandhu, N. Shankar, O. P. Tandon, and N. Madan, “Effects of iron therapy on cognition in anemic school going boys,” Ind. J. Physiol. Pharmacol., 47, No. 3, 301–310 (2003).

    CAS  Google Scholar 

  11. O. Boucher, C. H. Bastien, G. Muckle, et al., “Behavioural correlates of the P3b event-related potential in school-age children,” Int. J. Psychophysiol., 76, No. 3, 148–157 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. E. R. Braverman and K. Blum, “P3 (latency) event-related potential: an accurate predictor of memory impairment,” Clin. Electroencephalogr., 34, No. 3, 124–139 (2003).

    Article  PubMed  Google Scholar 

  13. Y. J. Chen and C. C. Hsu, “Effects of prenatal exposure to PCBs on the neurological function of children: a neuropsychological and neurophysiological study,” Dev. Med. Child Neurol., 36, No. 4, 312–320 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. E. V. Courchesne, “Neurophysiological correlates of cognitive development: Changes in long latency event-related potentials from childhood to adulthood,” Electroencephalogr. Clin. Neurophysiol. Clin. Neurophysiol., 45, No. 4, 468–482 (1978).

    Article  CAS  Google Scholar 

  15. V. De Pascalis, V. Varriale, and A. Matteoli, “Intelligence and P3 components of the event-related potential elicited during an auditory discrimination task with masking,” Intelligence, 36, No. 1, 35–47 (2008).

    Article  Google Scholar 

  16. M. V. Della Coletta, R. H. Scola, G. R. Wiemes, et al., “Event-related potentials (P3)and neuropsychological assessment in boys exhibiting Duchenne muscular dystrophy,” Arq. Neuropsiquiatr., 65, No. 1, 59–62 (2007).

    Article  PubMed  Google Scholar 

  17. O. Duman, S. Arayici, C. Fettahoglu, et al., “Neurocognitive function in patients with β-thalassemia major,” Pediatr. Int., 53, No. 4, 519–523 (2011).

    Article  PubMed  Google Scholar 

  18. C. C. Duncan, R. J. Barry, J. F. Connolly, et al., “Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400,” Clin. Neurophysiol., 120, No. 11, 1883–1908 (2009).

  19. R. J. Gurrera, D. F. Salisbury, B. F. O’Donnell, et al., “Auditory P3 indexes personality traits and cognitive function in healthy men and women,” Psychiatry Res., 133, No. 2–3, 215–228 (2005).

    Article  PubMed  Google Scholar 

  20. J. C. Hansen and S. A. Halyard, “Temporal dynamics of human auditory selective attention,” Psychophysiology, 25, 316–329 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. D. Hedges, R. Janis, S. Mickelson, et al., “P300 amplitude in Alzheimer’s disease: a meta-analysis and meta-regression,” Clin. EEG Neurosci., 47, No. 1, 48–55 (2016).

    Article  PubMed  Google Scholar 

  22. W. J. Huang, W. W. Chen, and X. Zhang, “The neurophysiology of P300 – an integrated review,” Eur. Rev. Med. Pharmacol. Sci., 19, No. 8, 1480–1488 (2015).

    PubMed  Google Scholar 

  23. T. B. Kamel, M. T. Abd Elmonaem, L. H. Khalil, et al., “Children with chronic lung diseases have cognitive dysfunction as assessed by event-related potential (auditory P3)and Stanford-Binet IQ (SB-IV) test,” Eur. Arch. Otorhinolaryngol. (2016), doi: https://doi.org/10.1007/s00405-016-4044-z.

  24. A. Kazis, V. Kimiskidis, G. Georgiadis, and K. Kapinas, “Cognitive event-related potentials and magnetic resonance imaging in myotonic dystrophy,” Neurophysiol. Clin., 26, No. 2, 75–84 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. J. Kropotov, V. Ponomarev, E. P. Tereshchenko, et al., “Effect of aging on ERP components of cognitive control,” Front. Aging Neurosci., 8, 69 (2016), doi: https://doi.org/10.3389/fnagi.2016.00069.

  26. F. Martin, E. Delpont, G. Suisse, et al., “Long latency event-related po tentials (P3)in gifted children,” Brain Dev., 15, No. 3, 173–177 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. J. Muiioz-Ruata, G. Gomez-Jarabo, M. Martin-Loeches, and L. Martinez-Lebrusant, “Neurophysiological and neuropsychological differences related to performance and verbal abilities in subjects with mild intellectual disability,” J. Intellect. Disabil. Res., 44, No. 5, 567–578 (2000).

    Article  Google Scholar 

  28. Y. Naganuma, T. Konishi, M. Matsui, et al., “The relationship between P3 latencies, and WISC-R and Wechsler memory scale results in epileptic children,” No. To. Hattatsu., 25, No. 6, 515–520 (1993).

    PubMed  CAS  Google Scholar 

  29. R. D. Oades, “Frontal, temporal and lateralized brain function in children with attention-deficit hyperactivity disorder: a psychophysiological and neuropsychological viewpoint on development,” Behav. Brain Res., 94, 83–95 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. R. D. Oades, A. Dittmann-Balcar, R. Schepker, et al., “Auditory event related potentials (ERPs)and mismatch negativity (MMN)in healthy children and those with attention-deficit or Tourette/tic symptoms,” Biol. Psychol., 43, 163–185 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. J. M. Olichney, J. C. Yang, J. Taylor, and M. Kutas, “Cognitive event-related potentials: biomarkers of synaptic dysfunction across the stages of Alzheimer’s disease,” J. Alzheimers Dis., 26, Supplement 3, 215–228 (2011).

  32. R. V. Pedroso, F. J. Fraga, D. I. Corazza, et al., “P3 latency and amplitude in Alzheimer’s disease: a systematic review,” Braz. J. Otorhinolaryngol., 78, No. 4, 126–132 (2012).

    Article  PubMed  Google Scholar 

  33. T. W. Picton and M. J. Taylor, “Electrophysiological evaluation of human brain development,” Dev. Neuropsychology, 31, No. 3, 249–278 (2007).

    Article  Google Scholar 

  34. J. Polich, “Neuropsychology of P3,” in: The Oxford Handbook of Event-Related Potential Components, S. J. Luck and E. S. Kappenman (eds.), Oxford Univ. Press, Oxford (2012), Vol. 2, pp. 159–188.

  35. J. Polich, “Updating P3: an integrative theory of P3a and P3b,” Clin. Neurophysiol., 118, No. 10, 2128–2148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. R. Portin, T. Kovala, P. Polo-Kantola, et al., “Does P3 reflect attentional or memory performances, or cognition more generally?” Scand. J. Psychol., 41, No. 1, 31–40 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. M. Senderecka, A. Grabowska, K. Gerc, et al., “Event-related potentials in children with attention deficit hyperactivity disorder: an investigation using an auditory oddball task,” Int. J. Psychophysiol., 85, No. 1, 106–115 (2012).

    Article  PubMed  Google Scholar 

  38. R. van Dinteren, M. Arns, M. L. A. Jongsma, and R. P. C. Kessels, “P3 development across the lifespan: a systematic review and meta-analysis,” PLoS One, 9, No. 2, e87347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. N. Vaney, F. Khaliq, and Y. Anjana, “Event-related potentials study in children with borderline intellectual functioning,” Ind. J. Psychol. Med., 37, No. 1, 53–57 (2015).

    Article  Google Scholar 

  40. R. Verleger, “On the utility of P3 latency as an index of mental chronometry,” Psychophysiology, 34, No. 2, 31–256 (1997).

    Article  Google Scholar 

  41. F. Zenker and J. J. Barajas, “Auditory P3 development from an active, passive and single-tone paradigms,” Int. J. Psychophysiol., 33, No. 2, 99–111 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shemyakina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 1, pp. 107–120, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemyakina, N.V., Nagornova, Z.V., Belisheva, N.K. et al. Assessment of the Parameters of Cognitive Potentials in Adolescent Northerners in Health and Developmental Delays. Neurosci Behav Physi 48, 534–542 (2018). https://doi.org/10.1007/s11055-018-0596-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0596-2

Keywords

Navigation