Skip to main content
Log in

The Role of “Prehistory” in the Reproduction of Sequential Movements of the Right and Left Hands: Encoding of Positions, Movements, and Sequence Structure

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Subjects’ errors in reproducing a remembered series of movements in the absence of visual feedback were analyzed in relation to previous performance of the task with the right and left hands (“prehistory”) and the spatial positioning of the movement target – randomly or ordered – according to a rule known to the subjects. Information relating to ordered positions of elements was found to be used in organizing movements of the right hand, while information relating to random positions was used in organizing movements of the left hand. When information relating to the ordered structure of the sequence exists, this mechanism activates the mechanisms encoding movements specific for the left hemisphere (vector coding); random positioning of elements in the sequence activates right-hemisphere position-coding mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Bobrova, “Current concepts on the cortical mechanisms and interhemisphere asymmetry in posture control (literature review),” Zh. Vyssh. Nerv. Deyat., 57, No. 6, 663–678 (2007).

    Google Scholar 

  2. E. V. Bobrova, V. A. Lyakhovetskii, I. N. Bogacheva, O. V. Chelnokova, G. N. Skopin, and E. R. Borshchevskaya, “Characteristics of interhemisphere interactions in the regulation of movement and posture,” in: Current Questions of Functional Asymmetry and Neuroplasticity [in Russian], Nauchnyi Mir, Moscow (2008), pp. 152–155.

    Google Scholar 

  3. E. V. Bobrova, V. A. Lyakhovetskii, and E. R. Borshchevskaya, “The role of the right hand in remembering the spatial ordering of targets on reproduction of movement sequences,” Zh. Vyssh. Nerv. Deyat., 60, No. 2, 162–165 (2010).

    CAS  Google Scholar 

  4. V. A. Lyakhovetskii and E. V. Bobrova, “Reproduction of remembered movement sequences with the right and left hands: positional and vector coding,” Zh. Vyssh. Nerv. Deyat., 59, No. 1, 33–42 (2009).

    Google Scholar 

  5. Y. Agam and R. Sekuler, “Geometric structure and chunking in reproduction of motion sequences,” J. Vision, 8, No. 1, 1–12 (2008).

    Article  Google Scholar 

  6. E. V. Bobrova and V. A. Lyakhovetskii, “Motor memory: movementand position-specific sequence representations,” in: Proc. Europ. Cognitive Sci. Conf., Delphi, Greece (2007).

  7. O. Bock and R. Eckmiller, “Goal-directed arm movements in absence of visual guidance: evidence for amplitude rather than position control,” Exp. Brain Res., 62, No. 3, 451–458 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. J. L. Bradshaw, “Asymmetries in property for action (research news),” Trends Cogn. Sci., 5, No. 5, 184–185 (2001).

    Article  PubMed  Google Scholar 

  9. J. L. Bradshaw and L. J. Rogers, The Evolution of Lateral Asymmetries, Language, Tool Use and Intellect, Academic Press, San Diego (1993).

    Google Scholar 

  10. S. E. Criscimagna-Hemminger, O. Donchin, M. S. Gazzaniga, and R. Shadmehr, “Learned dynamics of reaching movements generalize from dominant to nondominant arm,” J. Neurophysiol., 89, 168–176 (2003).

    Article  PubMed  Google Scholar 

  11. P. F. Dominey, T. Lelekov, J. Ventre-Dominey, and M. Jeannerod, “Dissociable processes for learning the surface structure and abstract structure of sensorimotor sequences,” J. Cogn. Neurosci., 10, No. 6, 734–751 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. S. T. Grafton, E. Hazeltine, and R. B. Ivry, “Abstract and effectorspecific representations of motor sequences identified with PET,” J. Neurosci., 18, No. 22, 9420–9428 (1998).

    PubMed  CAS  Google Scholar 

  13. S. T. Grafton, E. Hazeltine, and R. B. Ivry, “Motor sequence learning with the nondominant left hand. A PET functional imaging study,” Exp. Brain Res., 146, 369–378 (2002).

    Article  PubMed  Google Scholar 

  14. K. Y. Haaland and D. L. Harrington, “Hemispheric asymmetry of movement,” Curr. Opin. Neurobiol., 6, 796–800 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. K. Y. Haaland, J. L. Prestopnik, R. T. Knight, and R. R. Lee, “Hemispheric asymmetries for kinematic and positional aspects of reaching,” Brain, 127, No. 5, 1145–1158 (2004).

    Article  PubMed  Google Scholar 

  16. D. L. Harrington and K. Y. Haaland, “Hemispheric specialization for motor sequencing: abnormalities in levels of programming,” Neuropsychology, 29, No. 2, 147–163 (1991).

    Article  CAS  Google Scholar 

  17. J. B. Hellige and C. Michimata, “Categorization versus distance: hemispheric differences for processing spatial information,” Mem. Cognit., 17, No. 6, 770–776 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. M. Honda, M. P. Deiber, V. Ibanez, A. Pascual-Leone, P. Zhuang, and M. Hallett, “Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study,” Brain, 121, No. 11, 2159–2173 (1998).

    Article  PubMed  Google Scholar 

  19. G. Jager and A. Postma, “On the hemispheric specialization for categorical and coordinate spatial relations: a review of the current evidence,” Neuropsychologia, 41, No. 4, 504–515 (2003).

    Article  PubMed  Google Scholar 

  20. S. M. Kosslyn, M. Behrmann, and M. Jeannerod, “The cognitive neuroscience mental imagery,” Neuropsychologia, 33, 1335–1344 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. V. A. Lyakhovetskii and E. V. Bobrova, “The strategies of coding in spatial memory,” Perception, 36, 51S (2007).

    Google Scholar 

  22. R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, 9, 97–113 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. C. R. Olson and S. N. Gettner, “Brain representation of object-centered space,” Curr. Opin. Neurobiol., 6, 165–170 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. A. Postma and B. Laeng, “New insights in categorical and coordinate processing of spatial relations,” Neuropsychologia, 44, No. 9, 1515–1518 (2006).

    Article  PubMed  Google Scholar 

  25. K. H. Pribram, Brain and Perception. Holonomy and Structure in Figural Processing, Lawrence Erlbaum, New Jersey, London (1991).

    Google Scholar 

  26. R. L. Sainburg and S. V. Duff, “Does motor lateralization have implications for stroke rehabilitation?” J. Rehabil. Res. Dev., 43, No. 3, 311–322 (2006).

    Article  PubMed  Google Scholar 

  27. S. Y. Schaefer, K. Y. Haaland, and R. L. Sainburg, “Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy,” Neuropsychologia, 47, No. 13, 2953–2966 (2009).

    Article  PubMed  Google Scholar 

  28. S. D. Slotnick, L. R. Moo, M. A. Tesoro, and J. Hart, “Hemispheric asymmetry in categorical versus coordinate visuospatial processing revealed by temporary cortical deactivation,” J. Cogn. Neurosci., 13, No. 8, 1088–1096 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bobrova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 61, No. 5, pp. 565–572, September–October, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrova, E.V., Lyakhovetskii, V.A. & Borshchevskaya, E.R. The Role of “Prehistory” in the Reproduction of Sequential Movements of the Right and Left Hands: Encoding of Positions, Movements, and Sequence Structure. Neurosci Behav Physi 43, 56–62 (2013). https://doi.org/10.1007/s11055-012-9690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9690-z

Keywords

Navigation