Skip to main content

Advertisement

Log in

Cellular and Molecular Mechanisms of the Interaction between the Immune and Neuroendocrine Systems in Experimental Chronic Fatigue Syndrome

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Derangement of the interaction between the immune and neuroendocrine systems represent one of the major mechanisms in the development of chronic fatigue syndrome. Induction of chronic fatigue syndrome by i.p. administration of the synthetic double-stranded RNA poly I:C provides a suitable experimental model for studying these mechanisms. We report here our studies of changes in the intensity of the cytotoxic and proliferative activities of splenocytes, changes in the intensity of immunomodulatory cytokine signal transduction via the sphingomyelin pathway in the P2 membrane fraction of the cerebral cortex, and changes in the activity of the hypothalamo-hypophyseal-adrenocortical system (HHACS) during development of chronic fatigue syndrome in rats. Suppression of both cytotoxic and proliferative activity was demonstrated in rat splenocytes during the formation of experimental chronic fatigue syndrome. Important data showing suppression of the activity of neutral sphingomyelinase (N-SMase) activity were obtained, this being a key enzyme in the sphingomyelin cascade, in cerebral cortex cells three days after animals were given Poly I:C. Injections of poly I:C were followed by impairment of HHACS function in rats, with decreases in corticosterone concentrations in standard functional tests in which animals were given ACTH and hydrocortisone. The results lead to the conclusion that impairments to the interaction between the immune and neuroendocrine systems during development of chronic fatigue, including changes in HHACS activity, are mediated both at the level of changes in the activity of immunocompetent cells and directly on brain cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Artsimovich and T. S. Galushina, Chronic Fatigue Syndrome [in Russian], Novyi Mir, Moscow (2002).

    Google Scholar 

  2. N. P. Goncharov, V. I. Vorontsov, G. K. Kadiya, A. V. Antonichev, and V. N. Butnev, “Studies of adrenal and sex gland hormone functions in experiment on monkeys,” Vestn. Adak. Med. Nauk. SSSR, 8, 13–20 (1997).

    Google Scholar 

  3. I. V. Nesterova, I. P. Balmasova, V. A. Kozlov, E. S. Malova, and R. I. Sepiashvili, “Chronic fatigue syndrome in patients with recurrent viral infections: clinical immunological features and characteristics of serotoninergic regulation,” Tsitok. Vospal., 5, No. 2, 3–14 (2006).

    Google Scholar 

  4. E. G. Rybakina, N. N. Nalivaeva, I. Yu. Pivanovich, S. N. Shanin, I. A. Kozinets, and E. A. Korneva, “The role of neutral sphingomyelinase in interleukin-1-beta signal transduction in mouse brain cells,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 3, 303–311 (2000).

    CAS  Google Scholar 

  5. E. G. Rybakina and E. A. Korneva, “The physiological role of interleukin-1 in the mechanisms of development of stress reactions,” Med. Akad. Zh., 2, No. 2, 4–17 (2002).

    Google Scholar 

  6. E. G. Rybakina and E. A. Korneva, “Transduction of the interleukin-1 signal in the interaction of the nervous and immune systems,” Vestn. Ros. Akad. Med. Nauk., 7, 3–8 (2005).

    Google Scholar 

  7. E. E. Fomicheva, S. N. Shanin, and E. G. Rybakina, “Impairments to the interaction of the hypothalamo-hypophyseal-adrenocortical and immune systems as one of the mechanisms underlying the development of chronic fatigue syndrome,” Neiroimmunologiya, 6, No. 1–2, 4–12 (2008).

    Google Scholar 

  8. P. de Becker, M. McGregor, and K. de Meirleir, “Possible triggers and mode of onset of chronic fatigue syndrome,” J. Chronic Fatigue Syndrome, 10, 3–18 (2002).

    Article  Google Scholar 

  9. A. J. Cleare, “The neuroendocrinology of chronic fatigue syndrome,” Endocr. Rev., 24, No. 2, 236–252 (2003).

    CAS  PubMed  Google Scholar 

  10. A. J. Cleare, “The HPA axis and the genesis of chronic fatigue syndrome,” Trends Endocrinol. Metab., 15, 55–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. T. G. Dinan, T. Majeed, E. Lavelle, L. V. Scott, C. Berti, and P. Behan, “Blunted serotonin-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome,” Psychoneuroendocrinology, 22, 261–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. K. Fukuda, S. E. Straus, I. Hickie, et al., “The chronic fatigue syndrome: a comprehensive approach to its definition and study,” Ann. Intern. Med., 121, 953–959 (1994).

    CAS  PubMed  Google Scholar 

  13. C. J. Gamard, G. S. Dbaibo, B. Lin, L. M. Obeid, and Y. A. Hannun, “Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappa B,” J. Biol. Chem., 272, No. 26, 16474–16481 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. T. R. Gerrity, D. A. Papanicolaou, J. D. Amsterdam, S. Bingham, A. Grossman, T. Hedrick, R. B. Herberman, G. Krueger, S. Levine, N. Mohagheghpour, R. C. Moore, J. Oleske, and C. R. Snell, “Immunologic aspects of chronic fatigue syndrome,” Neuroimmunomod., 11, No. 6, 351–357 (2004).

    Article  CAS  Google Scholar 

  15. R. Glaser, D. A. Padgett, M. L. Litsky, et al., “Stress-associated changes in the steady-state expression of latent Epstein-Barr virus: implication for chronic fatigue syndrome and cancer,” Brain Behav. Immun., 19, 91–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. K. Inoue, H. Yamazaki, Y. Manabe, C. Fukuda, K. Hanai, and T. Fushiki, “Transforming growth factor beta activated during exercise in brain depresses spontaneous motor activity of animals,” Brain Res., 846, 145–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. T. Katafuchi, K. Kondo, T. Yasaka, K. Kubo, S. Take, and M. Yoshimura, “Prolonged effects of polyriboinosinic:polyribocylidylic acid on spontaneous running wheel activity and brain interferon alpha mRNA in rats: a model for immunologically induced fatigue,” Neurosci., 120, 837–845 (2003).

    Article  CAS  Google Scholar 

  18. T. Katafuchi, T. Kondo, S. Take, and M. Yoshimura, “Enhanced expression of brain interferon-α and serotonin transporter in immunologically induced fatigue in rats,” Eur. J. Neurosci., 22, 2817–2826 (2005).

    Article  PubMed  Google Scholar 

  19. R. Kolesnick, “Signal transduction through the sphingomyelin pathway,” Mol. Chem. Neuropathol., 21, 287–297 (1984).

    Article  Google Scholar 

  20. E. G. Lapetina, E. F. Soto, and E. De Robertis, “Gangliosides and Nacetyl-cholinesterase in isolated membranes in the rat brain cortex,” Biochem. Biophys Acta, 135, 33–43 (1967).

    Article  CAS  PubMed  Google Scholar 

  21. A. M. Lerner, S. H. Beqaj, R. G. Deeter, and J. T. Fitzgerald, “IgM serum antibodies to Epstein-Barr virus are uniquely present in a subset of patients with chronic fatigue syndrome,” In vivo, 18, 101–106 (2004).

    CAS  PubMed  Google Scholar 

  22. Q. Li, C. Wichems, A. Heils, L. D. Van De Kar, K. P. Lesch, and D. L. Murphy, “Reduction of 5-hydroxytryptamine (5-HT)1A-mediated temperature and neuroendocrine responses and (5-HT)1A binding sites in 5-HT transporter knockout mice,” J. Pharmacol. Exp. Ther., 291, 999–1007 (1999).

    CAS  PubMed  Google Scholar 

  23. B. Liu, L. M. Obeid, and Y. A. Hannun, “Sphingomyelin in cell regulation,” Seminars Cell. Dev. Biol., 8, 311–322 (1997).

    Article  CAS  Google Scholar 

  24. M. Lyall, M. Peakman, and S. Wessely, “A systematic review and critical evaluation of the immunology of chronic fatigue syndrome,” J. Psychosom. Res., 55, 79–90 (2003).

    Article  PubMed  Google Scholar 

  25. S. Mathias, A. Younes, C. C. Kan, I. Orlow, C. Joseph, and R. N. Kolesnick, “Activation of the sphingomyelin signalling pathway in intact EL4 cells and in a cell-free system by IL-1 beta,” Science, 259, 519–522 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. M. Narita, N. Nishigami, N. Narita, K. Yamaguti, N. Okado, Y. Watanabe, and H. Kuratsune, “Association between serotonin transporter gene polymorphism and chronic fatigue syndrome,” Biochem. Biophys. Res. Commun., 311, 264–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. J. B. Prins, J. W. M. Van der Meer, and G. Bleijenberg, “Chronic fatigue syndrome,” Lancet, 367, 246–355 (2006).

    Google Scholar 

  28. B. G. Rao and M. W. Spence, “Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5,” J. Lipid Res., 17, 506–515 (1976).

    CAS  PubMed  Google Scholar 

  29. E. G. Rybakina and E. A. Korneva, “Interleukin-1β signal transduction via the sphingomyelin pathway in brain cells,” in: NeuroImmune Biology, Vol. 6, Cytokines and the Brain, C. Phelps and E. Korneva (eds.), Elsevier B. V. (2008), pp. 79–91.

  30. L. V. Scott, S. Medbak, and T. G. Dinan, “Blunted adrenocorticotropin and cortisol response to corticotropin-releasing hormone stimulation in chronic fatigue syndrome,” Acta Psychiatr. Scand., 97, 450–457 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Korneva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 12, pp. 1324–1335, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybakina, E.G., Shanin, S.N., Fomicheva, E.E. et al. Cellular and Molecular Mechanisms of the Interaction between the Immune and Neuroendocrine Systems in Experimental Chronic Fatigue Syndrome. Neurosci Behav Physi 41, 198–205 (2011). https://doi.org/10.1007/s11055-011-9400-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-011-9400-2

Key words

Navigation