Skip to main content
Log in

Ontogenetic Characteristics of Behavior in Rats Subjected to Hypoxia on Day 14 or Day 18 of Embryogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Physiological development, motor activity, and cognitive functions were studied in rats subjected to acute normobaric hypoxic hypoxia (3 h at an O2 concentration of 7%) at different stages of embryogenesis (days E14 or E18). Prenatal hypoxia was found to lead to delays in physiological development and the establishment of motor behavior during the first month of postnatal ontogenesis. These changes were more marked in rats subjected to hypoxia on day 14 of intrauterine development and disappeared with age. In adult rats, regardless of the timing of exposure to hypoxia (E14 or E18), learning ability was degraded and long-term and short-term memory were impaired. These results suggest that exposure to the pathogenic factor during the main period of neuroblast generation and migration (E14) was significant both for physiological development and the establishment of motor behavior in the animals and for the execution of the cognitive functions of the brain, while exposure during the period at which maturation and differentiation processes dominate in the brain (E18) was more significant in relation to the execution of cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Vasil’ev, N. L. Tumanova, and I. A. Zhuravin, “Structural changes in the nervous tissue of the neocortex during the ontogenesis of rats after hypoxia at different stages of embryogenesis,” Zh. Évolyuts. Biokhim. Fiziol., 44, No. 3, 258–266 (2008).

    Google Scholar 

  2. L. A. Vatava, V. B. Kostkin, G. V. Makukhina, L. I. Khozhai, and V. A. Otellin, “A conditioned passive avoidance reflex reaction in female and male rats subjected to hypoxia at different stages of prenatal development,” Zh. Évolyuts. Biokhim. Fiziol., 40, No. 3, 250–253 (2004).

    Google Scholar 

  3. N. M. Dubrovskaya, N. N. Nalivaeva, A. J. Turner, and I. A. Zhuravin, “Effects of an α-secretase inhibitor metabolizing the amyloid peptide precursor on the formation of memories in rats,” Zh. Vyssh. Nerv. Deyat., 55, No. 6, 725–728 (2005).

    CAS  Google Scholar 

  4. I. A. Zhuravin, “Formation of integral mechanisms of regulation of motor functions in mammals depending on the conditions of embryonic development,” Zh. Évolyuts. Biokhim. Fiziol., 38, No. 5, 478–484 (2002).

    CAS  Google Scholar 

  5. I. A. Zhuravin and N. M. Dubrovskaya, “Involvement of the cholinergic system of the sensorimotor cortex of the rat brain in regulating different types of movement,” Zh. Vyssh. Nerv. Deyat., 50, No. 1, 103–112 (2000).

    CAS  Google Scholar 

  6. I. A. Zhuravin, N. M. Dubrovskaya, and N. L. Tumanova, “Postnatal physiological development of rats after acute prenatal hypoxia,” Ros. Fiziol. Zh. 89, No. 5, 522–532 (2003).

    CAS  Google Scholar 

  7. I. A. Zhuravin, N. N. Nalivaeva, and N. M. Dubrovskaya, “Effects of exogenous gangliosides on the formation of operant movements with tactile control in rats,” Zh. Vyssh. Nerv. Deyat., 43, No. 3, 1129–1136 (1993).

    CAS  Google Scholar 

  8. V. G. Kassil’, V. A. Otellin, L. I. Khozhai, and V. B. Kostkin, “Critical periods in the development of the brain,” Ros. Fiziol. Zh. 86, No. 11, 1418–1425 (2000).

    Google Scholar 

  9. K. Yu. Reznikov, Proliferation of Brain Cells in Vertebrates in Conditions of Normal Brain Development and Trauma [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  10. S. S. Trofimov, R. U. Ostrovskaya, N. M. Smol’nikova, E. P. Nemova, T. A. Gudasheva, E. A. Kuznetsova, and T. A. Voronina, “Correction of cognitive impairments induced by intrauterine hypoxia by nooglutil and L-pyroglutamyl-D-alanine in rats,” Eksperim. Klin. Farmakol., 58, No. 6, 10–13 (1995).

    CAS  Google Scholar 

  11. J. Altman and K. Sudarshan, “Postnatal development of locomotion in the laboratory rat,” Anim. Behav., 23, 896–920 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. K. K. Ashton, J. Zapf, I. Einschenk, and I. Z. MacKenzie, “Insulinlike growth factors (IGF) 1 and 2 in human foetal plasma and relationship to gestational age and foetal size during midpregnancy,” Acta Endocrinol., 110, No. 4, 558–563 (1985).

    CAS  PubMed  Google Scholar 

  13. R. E. Burke and K. G. Baimbridge, “Relative loss of the striatal striosome compartment, defined by calbindin-D28k immunostaining, following developmental hypoxic-ischemic injury,” Neurosci., 56, No. 2, 305–315 (1993).

    Article  CAS  Google Scholar 

  14. M. Dubovicky, E. Ujhazy, P. Kovacovsky, J. Navarova, M. Jurani, and L. Soltes, “Effect of melatonin on neurobehavioral dysfunctions induced by intrauterine hypoxia in rats,” Cent. Eur. J. Public Health, 12, 23–25 (2004).

    Google Scholar 

  15. H. Golan and M. Huleihel, “The effect of prenatal hypoxia on brain development: short- and long-term consequences demonstrated in rodent models,” Dev. Sci., 9, No. 4, 338–349 (2006).

    Article  PubMed  Google Scholar 

  16. R. H. Hermans, R. F. McGivern,W. Chen, and L. D. Longo, “Altered adult sexual behavior in the male rat following chronic prenatal hypoxia,” Neurotoxicol. Teratol., 15, No. 6, 353–363 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. B. Janicke and H. Coper, “The effect of prenatal exposure to hypoxia on the behaviour rats during their life span,” Pharmacol. Biochem. Behav., 48, 863–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. P. Lipton, “Ischemic cell death in brain neurons,” Physiol. Rev., 79, 1431–1568 (1999).

    CAS  PubMed  Google Scholar 

  19. M. W. Miller, “Effects of prenatal exposure to ethanol on neocortical development: II. Cell proliferation in the ventricular and subventricular zones of the rat,” J. Comp. Neurol., 287, 326–338 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. G. D. Muir, “Early ontogeny of locomotor behaviour: a comparison between altrical and precocial animals,” Brain Res. Bull., 53, No. 5, 719–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. N. N. Nalivaeva, L. Fisk, R. M. Canet Aviles, S. A. Plesneva, I. A. Zhuravin, and A. J. Turner, “Effect of prenatal hypoxia on expression of amyloid precursor protein and metallopeptidases in the rat brain,” Lett. Peptide Sci., 10, 455–462 (2004).

    Article  Google Scholar 

  22. C. Nyakas, B. Buwalda, and P. D. M. Luiten, “Hypoxia and brain development,” Prog. Neurobiol., 49, No. 1, 1–51 (1996).

    CAS  PubMed  Google Scholar 

  23. G. Pepeu and M. G. Giovannini, “Changes in acetylcholine extracellular levels during cognitive processes,” Learn. Mem., 11, No. 1, 21–27 (2004).

    Article  PubMed  Google Scholar 

  24. J. A. Prada and R. C. Tsang, “Biological mechanisms of environmentally induced causes of IUGR,” Eur. J. Clin. Nutr., 52, S21–S28 (1998).

    Google Scholar 

  25. Y. Qi and Q. M. Xue, “Ganglioside levels in hypoxic brains from neonatal and premature infants,” Mol. Chem. Neuropathol., 14, No. 2, 87–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. H. Rahman, H. Rosner, and K. H. Kortje, “Ca2+-Ganglioside interaction in neuronal differentiation and development,” in: Biological Function of Gangliosides, L. Svenerholm (ed.), Elsevier, Amsterdam (1994), Vol. 101, pp. 127–145.

    Chapter  Google Scholar 

  27. S. Rees and T. Inder, “Fetal and neonatal origins of altered brain development,” Early Hum. Dev., 81, No. 9, 753–761 (2005).

    Article  PubMed  Google Scholar 

  28. H. F. Sadiq, U. G. Das, T. F. Tracy, and S. U. Devaskar, “Intrauterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters,” Brain Res., 823, 96–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. K. V. Sharma, C. Koenigsberger, S. Brimijoin, and J. W. Bigbee, “Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth,” J. Neurosci. Res., 64, 165–175 (2001).

    Article  Google Scholar 

  30. F. Thullier, R. Lalonde, X. Cousin, and F. Lestienne, “Neurobehavioral evaluation of lusher mutant mice during ontogeny,” Dev. Brain Res., 100, 22–28 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Dubrovskaya.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 58, No. 6, pp. 718–727, November–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrovskaya, N.M., Zhuravin, I.A. Ontogenetic Characteristics of Behavior in Rats Subjected to Hypoxia on Day 14 or Day 18 of Embryogenesis. Neurosci Behav Physi 40, 231–238 (2010). https://doi.org/10.1007/s11055-009-9235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9235-2

Key words

Navigation