Skip to main content
Log in

Behavior and Spatial Learning in Radial Mazes in Birds

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses studies of spatial memory and learning in birds performed using the radial maze method. Descriptions of different versions of this test (standard and “giant” tunnel-type mazes, as well as unstructured “analogs”) are described and the methodological problems of testing birds are discussed. Behavioral measures from birds and laboratory rats, as the “standard” system for radial maze studies, are compared. The characteristics of spatial learning in birds of different systematic groups (pigeons, tits, corvids, chickens, etc.) are compared. Particular attention is paid to studies addressing spatial memory in closely related bird species with different ecological features, in terms of the ability to hoard food and finding their hoards after prolonged time periods, as well as to the few reports of results from experiments with migrant birds and homing pigeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Bogoslavskaya and G. I. Polyakov, Pathways for the Morphological Progression of Nerve Centers in Higher Vertebrates [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. L. N. Boronov, L. S. Bogoslavskaya, and E. G. Markova, “Comparative study of the morphology of the telencephalon in corvid birds in relation to their feeding specializations,” Zool. Zh., 7, No. 10, 82–97 (1994).

    Google Scholar 

  3. Z. A. Zorina, “Reasoning in animals: laboratory experiments and observations in nature,” Zool. Zh., 84, No. 1, 134–149 (2005).

    Google Scholar 

  4. Z. A. Zorina, A. A. Smirnova, M. G. Pleskacheva, and E. V. Dubynina, “New findings in studies of the brain and higher nervous activity in corvid birds (2002–2005). Ecology of corvid birds in conditions of natural and anthropogenic landscapes in Russia,” in: Proceedings of the 7th All-Russia Scientific Conference on Studies of the Ecology of Corvid Birds in Russia [in Russian], V. M. Konstantinov and I. I. Rakhimov (eds.), Novoe Znanie, Kazan (2006), pp. 16–43.

  5. V. D. Il’ichev and E. K. Vilks, Spatial Orientation in Birds [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  6. N. L. Krushinskaya, “A number of complex food-related forms of behavior in nutcrackers after ablation of the archecortex,” Zh. Évolyuts. Biokhim. Fiziol., 2, No. 6, 563–568 (1966).

    Google Scholar 

  7. L. V. Krushinskii, Formation of Animal Behavior in Normal and Pathological Conditions [in Russian], Moscow State University Press, Moscow (1960).

    Google Scholar 

  8. L. V. Krushinskii, Biological Bases of Cognitive Activity [in Russian], Moscow State University Press (1986).

  9. D. K. Obukhov, Current Concepts on the Structural-Functional Organization of the Telencephalon in Birds. Morphogenesis and Reactive Rearrangement of the Nervous System [in Russian], O. S. Sotnikov (ed.), St. Petersburg University Press, St. Petersburg (1996), pp. 113–133.

    Google Scholar 

  10. M. G. Pleskacheva, P. A. Kuptsov, A. A. Smirnova, M. G. Bagotskaya, and Kh.-P. Lipp, “Training of gray crows (Corvus cornix L.) in a ‘giant’ 8-arm radial maze,” Zh. Vyssh. Nerv. Deyat., 53, No. 6, 808–811 (2003).

    CAS  Google Scholar 

  11. A. G. Rezanov, Feeding Behavior: A Method for Digital Coding and Database Analysis [in Russian], Izdat-Shkola, Moscow (2000).

    Google Scholar 

  12. R. P. Balda and A. C. Kamil, “The spatial memory of Clark’s nutcrackers (Nucifraga columbiana) in an analog of the radial-arm maze,” Anim. Learn. Behav., 16, 116–122 (1988).

    Google Scholar 

  13. R. P. Balda and A. C. Kamil, “A comparative study of cache recovery by three corvid species,” Anim. Behav., 38, 486–495 (1989).

    Article  Google Scholar 

  14. R. P. Balda, A. C. Kamil, P. A. Bednekoff, and A. C. Hile, “Species differences in spatial memory performance on a three-dimensional task,” Ethology, 103, 47–55 (1997).

    Article  Google Scholar 

  15. J. A. Basil, A. C. Kamil, R. P. Balda, and F. V. Kite, “Differences in hippocampal volume among food storing corvids,” Brain Behav. Evol., 47, No. 3, 156–164 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. W. W. Beatty and D. A. Shavalia, “Spatial memory in rats: time course of working memory and effect of anesthetics,” Behav. Neural Biol., 28, 454–462 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. K. E. Bell and W. M. Baum, “Group foraging sensitivity to predictable and unpredictable changes in food distribution: past experience or present circumstances?” J. Exptl. Anal. Behav., 78, No. 2, 179–194 (2002).

    Article  Google Scholar 

  18. V. P. Bingman, T. J. Jones, R. Strasser, A. Gagliardo, and P. Ioale, “Homing pigeons, hippocampus and spatial cognition,” in: Behavioural Brain Research in Naturalistic and Semi-Naturalistic Settings: Possibilities and Perspectives, E. Alleva, A. Fasolo, H. P. Lipp, L. Nadel, and L. Ricceri (eds.), Kluwer, Dordrecht (1995), pp. 207–224.

    Google Scholar 

  19. V. P. Bingman, G. E. Hough, M. C. Kahn, and J. J. Siegel, “The homing pigeon hippocampus and space: in search of adaptive specialization,” Brain Behav. Evol., 62, No. 2, 117–127 (2003).

    Article  PubMed  Google Scholar 

  20. M. E. Bitterman, “Phyletic differences in learning,” Amer. Psychol., 20, 396–410 (1965).

    Article  CAS  Google Scholar 

  21. A. B. Bond, R. G. Cook, and M. R. Lamb, “Spatial memory and the performance of rats and pigeons in the radial-arm maze,” Anim. Learn. Behav., 9, No. 4, 575–580 (1981).

    Google Scholar 

  22. A. Brodin and K. Lundborg, “Is hippocampal volume affected by specialization for food hoarding in birds?” Proc. Biol. Sci., 270, No. 1524, 1555–1563 (2003).

    Article  PubMed  Google Scholar 

  23. M. Colombo, N. J. Broadbent, S. C. Taylor, and N. Frost, “The role of the avian hippocampus in orientation in space and time,” Brain Res., 919, No. 2, 292–301 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. W. E. Crusio, H. Schwegler, and H. P. Lipp, “Radial-maze performance and structural variation of the hippocampus in mice: a correlation with mossy fibre distribution,” Brain Res., 425, No. 1, 182–185 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. R. H. Dale, “Spatial memory in pigeons on a four-arm radial maze,” Can. J. Psychol., 42, No. 1, 78–83 (1988).

    PubMed  CAS  Google Scholar 

  26. W. N. Dember and H. Fowler, “Spontaneous alternation behavior,” Psychol. Bull., 55, 412–428 (1958).

    Article  PubMed  CAS  Google Scholar 

  27. I. Divac, J. Mogensen, and A. Bjorklund, “The prefrontal ‘cortex’ in the pigeon. Biochemical evidence,” Brain Res., 332, No. 2, 365–368 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. P. Ebinger and R. Lohmer, “A volumetric comparison of brains between greylag geese (Anser anser L.) and domestic geese,” J. Hirnforsch., 28, No. 3, 291–299 (1987).

    PubMed  CAS  Google Scholar 

  29. N. J. Emery, “Cognitive ornithology: the evolution of avian intelligence,” Phil. Trans. Roy. Soc. Lond. B. Biol. Sci., 361, No. 1465, 23–43 (2006).

    Article  Google Scholar 

  30. N. J. Emery and N. S. Clayton, “The mentality of crows: convergent evolution of intelligence in corvids and apes,” Science, 306, No. 5703, 1903–1907 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. A. S. Etienne, S. Sitbon, C. Dahn-Hurni, and R. Maurer, “Golden hamsters on the eight-arm maze in light and darkness: the role of dead reckoning,” Q. J. Exptl. Psychol. (B), 47, No. 4, 401–425 (1994).

    CAS  Google Scholar 

  32. E. A. Gaffan and J. A. Davies, “The role of exploration in win-shift and win-stay performance on a radial maze,” Learn. Motiv., 12, 282–299 (1981).

    Article  Google Scholar 

  33. A. Gagliardo, M. Mazzotto, and I. Divac, “Memory of radial maze behavior in pigeons after ablations of the presumed equivalent of mammalian prefrontal cortex,” Behav. Neurosci., 111, 955–962 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. L. Z. Garamszegi and M. Eens, “The evolution of hippocampus volume and brain size in relation to food hoarding in birds,” Ecol. Lett., 7, No. 12, 1216–1224 (2004).

    Article  Google Scholar 

  35. D. Goodwin, Pigeons and Doves of the World, British Museum (Natural History) London (1967).

  36. R. L. Gossette, M. F. Gossette, and W. Riddell, “Comparisons of successive discrimination reversal performances among closely and remotely related avian species,” Anim. Behav., 14, No. 4, 560–564 (1966).

    Article  PubMed  CAS  Google Scholar 

  37. K. Gould-Beierle, “A comparison of four corvid species in a working and reference memory task using a radial maze,” J. Comp. Psychol., 114, No. 4, 347–356 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. R. R. Hampton, D. F. Sherry, S. J. Shuttleworth, M. Khurgel, and G. Ivy, “Hippocampal volume and food-storing behavior are related in parids,” Brain Behav. Evol., 45, No. 1, 54–61 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. S. D. Healy and J. R. Krebs, “Development of hippocampal specialization in a food-storing bird,” Behav. Brain Res., 53, No. 1–2, 127–131 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. S. C. Hilton and J. R. Krebs, “Spatial memory of four species of Parus: performance in an open-field analogue of a radial maze,” Q. J. Exptl. Psychol. (B), 42, No. 4, 345–368 (1990).

    Google Scholar 

  41. R. A. Holland, “The role of visual landmarks in the avian familiar area map,” J. Exptl. Biol., 206, No. 11, 1773–1778 (2003).

    Article  Google Scholar 

  42. W. K. Honig, “Studies of working memory in the pigeon,” in: Cognitive Processes in Animal Behavior, S. H. Hulse, H. Fowler, and W. K. Honig (eds.), Erlbaum, Hillsdale, N.J. (1978), pp. 211–248.

    Google Scholar 

  43. S. H. Hulse and D. K. O’Leary, “Serial pattern learning: teaching an alphabet to rats,” J. Exptl. Psychol.: Anim. Behav. Proc., 8, 260–273 (1982).

    Article  Google Scholar 

  44. L. S. Janis, T. W. Bishop, and G. L. Dunbar, “Medial septal lesions in rats produce permanent deficits for strategy selection in a spatial memory task,” Behav. Neurosci., 108, 892–898 (1994).

    Article  PubMed  CAS  Google Scholar 

  45. A. C. Kamil and R. P. Banda, “Cache recovery and spatial memory in Clark’s nutcrackers (Nucifraga columbiana),” J. Exptl. Psychol.: Anim. Behav. Proc., 11, 95–111 (1985).

    Article  Google Scholar 

  46. A. C. Kamil, R. P. Balda, and D. J. Olson, Performance of four seed-caching corvid species in the radial-arm maze analog,” J. Comp. Psychol., 108, No. 4, 385–393 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. A. C. Kamil and S. I. Yoerg, “Learning and foraging behavior,” Persp. Ethol., 5, 325–346 (1982).

    Google Scholar 

  48. R. P. Kesner, A. A. Chiba, and P. Jackson-Smith, “Rats do show primacy and recency effects in memory for lists of spatial locations: a reply to Gaffan,” Anim. Learn. Behav., 22, 214–218 (1994).

    Google Scholar 

  49. J. R. Krebs, D. F. Sherry, S. D. Healy, V. H. Perry, and A. L. Vaccarino, “Hippocampal specialization of food-storing birds,” Proc. Natl. Acad. Sci. USA, 86, No. 4, 1388–1392 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. L. Lefebvre, P. Whittle, E. Lascaris, and A. Finkelstein, “Feeding innovations and forebrain size in birds,” Anim. Behav., 53, No. 3, 549–560 (1997).

    Article  Google Scholar 

  51. H. P. Lipp, M. G. Pleskacheva, H. Gossweiler, L. Ricceri, A. A. Smirnova, N. N. Garin, O. P. Perepiolkina, D. N. Voronkov, P. A. Kuptsov, and G. Dell’Omo, “A large outdoor radial maze for comparative studies in birds and mammals,” Neurosci. Biobehav. Rev., 25, No. 1, 83–99 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. H. P. Lipp, A. L. Vyssotski, D. P. Wolfer, S. Renaudineau, M. Savini, G. Troster, and G. Dell’Omo, “Pigeon homing along highways and exits,” Curr. Biol., 14, No. 14, 1239–1249 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. J. R. Lucas, A. Brodin, S. R. de Kort, and N. S. Clayton, “Does hippocampal size correlate with the degree of caching specialization?” Proc Biol. Sci., 271, No. 1556, 2423–2429 (2004).

    Article  PubMed  Google Scholar 

  54. E. M. Macphail, “The role of the avian hippocampus in spatial memory,” Psichologica, 23, 93–108 (2002).

    Google Scholar 

  55. E. F. Meehan, “Effects of MK-801 on spatial memory in homing and nonhoming pigeon breeds,” Behav. Neurosci., 110, No. 6, 1487–1491 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. C. Mettke-Hofmann and E. Gwinner, “Long-term memory for a life on the move,” Proc. Natl. Acad. Sci. USA, 100, No. 10, 5863–5866 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. S. J. Mizumori, M. R. Rozenzweig, and M. G. Kermisch, “Failure of mice to demonstrate spatial memory in the radial maze,” Behav. Neural. Biol., 35, No. 1, 33–45 (1982).

    Article  PubMed  CAS  Google Scholar 

  58. F. R. Moore and T. E. Osadchuk, “Spatial memory in a passerine migrant,” in: Avian Navigation, F. Papi and H. G. Wallraff (eds.), Springer, New York (1982), pp. 319–325.

    Google Scholar 

  59. R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe, “Place navigation impaired in rats with hippocampal lesions,” Nature, 297, 681–683 (1982).

    Article  PubMed  CAS  Google Scholar 

  60. N. Nikolakakis and L. Lefebvre, “Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables,” Behaviour, 137, 1415–1429 (2000).

    Article  Google Scholar 

  61. J. O’Keefe and L. Nadel, The Hippocampus as a Cognitive Map, Oxford University Press, Oxford (1978).

    Google Scholar 

  62. D. J. Olson, A. C. Kamil, and R. P. Balda, “Effects of response strategy and retention interval on performance of Clark’s nutcrackers in a radial maze analogue,” J. Exptl. Psychol.: Anim. Behav. Proc., 19, No. 2, 138–148 (1993).

    Article  CAS  Google Scholar 

  63. D. S. Olton, “Characteristics of spatial memory,” in: Cognitive Processes in Animal Behavior, S. H. Hulse, H. Fowler, and W. K. Honig (eds.), Lawrence Erlbaum Assoc., Hillsdale, N.J. (1978), pp. 341–373.

    Google Scholar 

  64. D. S. Olton, C. Collison, and M. A. Werz, “Spatial memory and radial arm maze performance of rats,” Learn. Motiv., 8, 289–314 (1977).

    Article  Google Scholar 

  65. D. S. Olton, G. E. Handlemann, and J. A. Walker, “Spatial memory and food searching strategies,” in: Foraging Behavior: Ecological, Ethological, and Psychological Approaches, A. C. Kamil and T. D. Sargent (eds.), Garland STPM Press, New York (1981), pp. 333–354.

    Google Scholar 

  66. D. S. Olton and R. J. Samuelson, “Remembrance of places passed: spatial memory in rats,” J. Exptl. Psychol.: Anim. Behav. Proc., 2, 97–116 (1976).

    Article  Google Scholar 

  67. D. S. Olton, J. A. Walker, and W. A. Wolf, “A disconnection analysis of hippocampal function,” Brain Res., 233, 241–253 (1982).

    Article  PubMed  CAS  Google Scholar 

  68. F. Papi, “Recent experiments on pigeon navigation, in: Behavioural Brain Research in Naturalistic and Semi-Naturalistic Settings: Possibilities and Perspectives, E. Alleva, A. Fasolo, H. P. Lipp, L. Nadel, and L. Ricceri (eds.), Kluwer, Dordrecht (1995), pp. 225–238.

    Google Scholar 

  69. M. G. Pleskacheva, G. dell’Omo, P. A. Kuptsov, D. N. Voronkov, N. N. Garin, and H.-P. Lipp, “Domestic birds in a giant radial maze: spatial learning in chickens, guinea fowls and geese,” Soc. Neurosci. Abstr., 27, program No. 536.6, 27 (2001).

    Google Scholar 

  70. M. G. Pleskacheva, P. A. Kuptsov, D. N. Voronkov, G. Dell’Omo, and H.-P. Lipp, “Pigeons in a giant radial maze,” FENS Forum Abstr., 2, A182.10 (2004).

    Google Scholar 

  71. A. Portmann, “Etudes sur la cerebralisation chez les oiseaux. II. Les indices intra-cerebraux,” Alauda, 15, No. 1, 1–15 (1947).

    Google Scholar 

  72. R. W. Powell and W. Kelly, “Responding under positive and negative response contingencies in pigeons and crows,” J. Exptl. Anal. Behav., 25, No. 2, 219–225 (1976).

    Article  CAS  Google Scholar 

  73. V. V. Pravosudov and S. R. de Kort, “Is the western scrub-jay (Aphelocoma californica) really an underdog among food-caching corvids when it comes to hippocampal volume and food caching propensity?” Brain Behav. Evol., 67, No. 1, 1–9 (2006).

    Article  PubMed  Google Scholar 

  74. V. V. Pravosudov, A. S. Kitayski, and A. Omanska, “The relationship between migratory behaviour, memory and the hippocampus: an intraspecific comparison,” Proc. Biol. Sci., 273, No. 1601, 2641–2649 (2006).

    Article  PubMed  Google Scholar 

  75. H. Prior and O. Gunturkun, “Parallel working memory for spatial location and food-related object cues in foraging pigeons: binocular and lateralized monocular performance,” Learn. Mem., 8, No. 1, 44–51 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. G. Rehkamper, H. Frahm, and M. D. Mann, “Evolutionary constraints of large telencephala,” in: Brain Evolution and Cognition, G. Roth and M. Wulliman (eds.), John Willey and Sons, Spektrum Akad. Verlag, New York, Heidelberg (2001), pp. 49–77.

    Google Scholar 

  77. G. Rehkamper, E. Haase, and H. D. Frahm, “Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia f.d. (fantails, homing pigeons, strassers),” Brain Behav. Evol., 31, No. 3, 141–149 (1988).

    Article  PubMed  CAS  Google Scholar 

  78. A. Reiner, D. J. Perkel, L. L. Bruce, A. B. Butler, A. Csilag, W. Kuenzel, L. Medina, G. Paxinos, T. Shimizu, G. Striedter, M.Wild, G. F. Ball, S. Durand, O. Gunturkun, D. W. Lee, C. V. Mello, A. Powers, S. A. White, G. Hough, L. Kubikova, T. V. Smulders, K.Wada, J. Dugas-Ford, S. Husband, K. Yamamoto, J. Yu, C. Siang, E. D. Jarvis, and O. Gunturkun, “Revised nomenclature for avian telencephalon and some related brainstem nuclei,” J. Comp. Neurol., 473, No. 3, 377–414 (2004).

    Article  PubMed  Google Scholar 

  79. W. A. Roberts and R. H. I. Dale, “Remembrance of place lasts: Proactive inhibition and pattern of choice in rat spatial memory,” Learn. Motiv., 12, 261–281 (1981).

    Article  Google Scholar 

  80. W. A. Roberts and D. S. Grant, “Studies of short-term memory in the pigeon using the delayed matching-to-sample procedure,” in: Processes of Animal Memory, D. L. Medin, W. A. Roberts, and R. T. Davis (eds.), Lawrence Erlbaum Assoc., Hillsdale, New Jersey (1976), pp. 79–112.

    Google Scholar 

  81. W. A. Roberts and W. E. Smythe, “Memory for lists of spatial events in the rat,” Learn. Motiv., 10, 313–336 (1979).

    Article  Google Scholar 

  82. W. A. Roberts and N. Van Veldhuizen, “Spatial memory in pigeons on the radial maze,” J. Exptl. Psychol.: Anim. Behav. Proc., 11, No. 2, 241–260 (1985).

    Article  Google Scholar 

  83. H. L. Roitblat, W. Tham, and L. Golub, “Performance of Betta splendens in a radial arm maze,” Anim. Learn. Behav., 10, 108–114 (1982).

    Google Scholar 

  84. P. Roullet and J. M. Lassalle, “Radial maze learning using exclusively distant visual cues reveals learners and nonlearners among inbred mouse strains,” Physiol. Behav., 58, No. 6, 1189–1195 (1995).

    Article  PubMed  CAS  Google Scholar 

  85. S. J. Shettleworth, “Learning and behavioural ecology,” in: Behavioural Ecology: An Evolutionary Approach, J. R. Krebs and N. Davis (eds.), Blackwell Scientific, Oxford (1994), pp. 170–194.

    Google Scholar 

  86. B. F. Skinner, “Autoshaping,” Science, 173, No. 998, 752–753 (1971).

    Article  PubMed  CAS  Google Scholar 

  87. M. L. Spetch and C. A. Edwards, “Spatial memory in pigeons (Columba livia) in an open-field feeding environment,” J. Comp. Psychol., 100, 266–278 (1986).

    Article  Google Scholar 

  88. M. L. Spetch and W. K. Honig, “Characteristics of pigeons’ spatial working memory in an open-field task,” Anim. Learn. Behav., 16, 123–131 (1988).

    Google Scholar 

  89. B. L. Stafford, R. P. Balda, and A. C. Kamil, “Does seed-caching experience affect spatial memory performance by pinyon jays?” Ethology, 112, No. 12, 1202–1208 (2006).

    Article  Google Scholar 

  90. T. A. Stevens and J. R. Krebs, “Retrieval of stored food by marsh tits Parus palustris in the field,” Ibis, 128, 513–525 (1986).

    Article  Google Scholar 

  91. S. Timmermans, L. Lefebvre, D. Boire, and P. Basu, “Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds,” Brain Behav. Evol., 56, No. 4, 196–203 (2000).

    Article  PubMed  CAS  Google Scholar 

  92. S. V. Vander Wall and R. P. Balda, “Ecology and evolution of foodstorage behavior in conifer-seed-caching corvids,” Z. Tierpsychol., 56, 217–242 (1981).

    Google Scholar 

  93. S. B. Vander Wall and H. E. Hutchins, “Dependence of Clark’s nutcracker, Nucifraga columbiana, on conifer seeds during the postfledging period,” Can. Field Naturalist, 97, 208–214 (1983).

    Google Scholar 

  94. H. G. Wallraff, “Navigation by homing pigeon: updated perspective,” Ethol. Ecol. Evol., 13, No. 1, 1–48 (2001).

    Google Scholar 

  95. D. M. Wilkie and P. Slobin, “Gerbils in space: performance on the 17-arm radial maze,” J. Exptl. Anal. Behav., 40, No. 3, 301–312 (1983).

    Article  CAS  Google Scholar 

  96. D. M. Wilkie, M. L. Spetch, and L. Chew, “The ring dove’s shortterm memory capacity for spatial information,” Anim. Behav., 29, 639–641 (1981).

    Article  Google Scholar 

  97. B. J. Wilson, N. J. Macintosh, and R. A. Boakes, “Transfer of relational rules in matching and oddity learning by pigeons and corvids,” Q. J. Exptl. Psychol (B), 37, 313–332 (1985).

    Google Scholar 

  98. R. Wiltschko and W. Wiltschko, “Avian navigation: from historical to modern concepts,” Anim. Behav., 65, No. 2, 257–272 (2003).

    Article  Google Scholar 

  99. L. Zoladek and W. A. Roberts, “The sensory basis of spatial memory in the rat,” 6, 77–81 (1978).

  100. Z. A. Zorina, Reasoning in Birds, Overseas Publ. Assoc., Amsterdam (1997), pp. 1–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Pleskacheva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 58, No. 4, pp. 389–407, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleskacheva, M.G. Behavior and Spatial Learning in Radial Mazes in Birds. Neurosci Behav Physi 39, 725–739 (2009). https://doi.org/10.1007/s11055-009-9199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9199-2

Key words

Navigation