Skip to main content
Log in

Origin and Molecular Evolution of Ionotropic Glutamate Receptors

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article provides a review of approaches to identification of the pathways of the molecular evolution of glutamate receptors. Extensive evidence has now accumulated on the homology of glutamate-binding proteins with the ability to function as ligand-activated channels. However, knowledge of the amino acid sequences of the polypeptides forming these channels is a necessary but insufficient condition for identifying their origin and changes during evolution. Natural selection of protein molecules appears to have identified and fixed their functional nature. Molecular and functional approaches should therefore complement each other in studies of protein evolution. Studies of glutamate receptor channels in vertebrates and invertebrates provide an example showing how knowledge of the spatial organization and the details of the mechanisms of operation allows relationships to be identified and possible pathways of the molecular evolution of receptors to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Magazanik, S. M. Antonov, and V. E. Gmiro, “Mechanism of activation and blockade of glutamate-sensitive postsynaptic membranes,” Biol. Membrany, 1, No. 2, 130–140 (1984).

    CAS  Google Scholar 

  2. L. G. Magazanik, K. V. Bol’shakov, S. L. Buldakova, V. E. Gmiro, N. A. Dorofeeva, N. Ya. Lukomskaya, N. N. Potap’eva, M. V. Samoilova, D. B. Tikhonov, I. M. Fedorova, and E. V. Frolova, “Structural characteristics of ionotropic glutamate receptors detected by channel blockade,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, 1138–1151 (2000).

    CAS  Google Scholar 

  3. M. V. Samoilova, E. V. Frolova, and L. G. Magazanik, “Glutamate receptors controlled by cationic channels in the membranes of neurons in the pulmonate mollusk Planorbarius corneus,” Zh. Évolyuts. Biokhim. Fiziol., 33, No. 3, 331–345 (1997).

    Google Scholar 

  4. I. M. Fedorova, V. E. Gmiro, L. G. Magazanik, and D. B. Tikhonov, “Ion channels of glutamate receptors in the neuromuscular junction of larvae of the fly Calliphora vicina demonstrate high structural homology to vertebrate AMPA channels,” Zh. Évolyuts. Biokhim. Fiziol., 44, No. 6 (2008).

    Google Scholar 

  5. M. Amador and J. A. Dani, “MK-801 inhibition of nicotinic acetylcholine receptor channels,” Synapse, 7, 207–215 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. N. Armstrong, Y. Sun, G. Q. Chen, and E. Gouaux, “Structure of a glutamate-receptor ligand-binding core in complex with kainate,” Nature, 395, 913–917 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. N. Armstrong and E. Gouaux, “Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core,” Neuron, 28, 165–181 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. C. Beck, L. P. Wollmuth, P. H. Seeburg, B. Sakmann, and T. Kuner, “NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines,” Neuron, 22, 559–570 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. J. A. Bennett and R. J. Dingledine, “Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop,” Neuron, 14, 373–384 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. K. V. Bolshakov, D. B. Tikhonov,V. E. Gmiro, and L. G. Magazanik, “Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-D-aspartate and AMPA receptors of rat brain is revealed by channel blockade,” Neurosci. Lett., 291, 101–104 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. V. Y. Bolshakov, S. A. Gapon, and L. G. Magazanik, “Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus,” J. Physiol., 439, 15–35 (1991).

    PubMed  CAS  Google Scholar 

  12. V. Y. Bolshakov, S. A. Gapon, and L. G. Magazanik, “Transduction mechanism for glutamate-induced potassium current in neurones of the mollusc Planorbarius corneus,” J. Physiol., 455, 33–50 (1992).

    PubMed  CAS  Google Scholar 

  13. Y. Bourne, T. T. Talley, S. B. Hansen, P. Taylor, and P. Marchot, “Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors,” EMBO J., 24, 1512–1522 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. P. J. Brocke and A. V. Maricq, “Ionotropic glutamate receptors: genetics, behavior and electrophysiology,” WormBook, 1–16 (2006).

  15. B. Buisson and D. Bertrand, “Allosteric modulation of neuronal nicotinic acetylcholine receptors,” J. Physiol. (Paris), 92, 89–100 (1998).

    Article  CAS  Google Scholar 

  16. P. H. Celie, S. E. Rossum-Fikkert,W. J. van Dijk, K. Brejc, A. B. Smit, and T. K. Sixma, “Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures,” Neuron, 41, 907–914 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. P. H. Celie, I. E. Kasheverov, D. Y. Mordvintsev, R. C. Hogg, P. Van Nierop, R. van Elk, S. E. Rossum-Fikkert, M. N. Zhmak, D. Bertrand, V. Tsetlin, T. K. Sixma, and A. B. Smit, “Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant,” Nat. Struct. Mol. Biol., 12, 582–588 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. G. Q. Chen, C. Cui, M. L. Mayer, and E. Gouaux, “Functional characterization of a potassium-selective prokaryotic glutamate receptor,” Nature, 402, 817–821 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. J. Chiu, R. DeSalle, H. M. Lam, L. Meisel, and G. Coruzzi, “Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged,” Mol. Biol. Evol., 16, 826–838 (1999).

    PubMed  CAS  Google Scholar 

  20. P. J. Corringer, S. Bertrand, J. L. Galzi, A. Devillers-Thiery, J. P. Changeux, and D. Bertrand, “Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor,” Neuron, 22, 831–843 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. S. Cull-Candy, L. Kelly, and M. Farrant, “Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond,” Curr. Opin. Neurobiol., 16, 288–297 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. S. G. Cull-Candy, “Two types of extrajunctional L-glutamate receptors in locust muscle fibres,” J. Physiol., 255, 449–464 (1976).

    PubMed  CAS  Google Scholar 

  23. R. Davenport, “Glutamate receptors in plants,” Ann. Bot. (London), 90, 549–557 (2002).

    Article  CAS  Google Scholar 

  24. A. DiAntonio, “Glutamate receptors at the Drosophila neuromuscular junction,” Int. Rev. Neurobiol., 75, 165–179 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. R. J. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacol. Rev., 51, 7–61 (1999).

    PubMed  CAS  Google Scholar 

  26. J. Dudel, C. Franke, H. Hatt, and P. N. Usherwood, “Chloride channels gated by extrajunctional glutamate receptors (H-receptors) on locust leg muscle,” Brain Res., 481, 215–220 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. J. L. Galzi, A. Devillersthiery, N. Hussy, S. Bertrand, J.-P. Changeux, and D. Bertrand, “Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic,” Nature, 359, 500–505 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. M. J. Gunthorpe and S. C. Lummis, “Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily,” J. Biol. Chem., 276, 10,977–10,983 (2001).

    Article  CAS  Google Scholar 

  29. M. Heine, L. Groc, R. Frischknecht, J. C. Beique, B. Lounis, G. Rumbaugh, R. L. Huganir, L. Cognet, and D. Choquet, “Surface mobility of postsynaptic AMPARs tunes synaptic transmission,” Science, 320, 201–205 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. A. Hogner, J. S. Kastrup, R. Jin, T. Liljefors, M. L. Mayer, J. Egebjerg, I. K. Larsen, and E. Gouaux, “Structural basis for AMPA receptor activation and ligand selectivity: crystal structures of five agonist complexes with the GluR2 ligand-binding core,” J. Mol. Biol., 322, 93–109 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. A. Hogner, J. R. Greenwood, T. Liljefors, M. L. Lunn, J. Egebjerg, I. K. Larsen, E. Goualux, and J. S. Kastrup, “Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the GluR2 ligand-binding core, in comparison with DNQX,” J. Med. Chem., 46, 214–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. M. Hollmann, C. Maron, and S. Heinemann, “N-Glycosylation site tagging suggests a three trans-membrane domain topology for the glutamate receptor GluR1,” Neuron, 13, 1331–1343 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. C. D. Hsiao,Y. J. Sun, J. Rose, and B. C. Wang, “The crystal structure of glutamine-binding protein from Escherichia coli,” J. Mol. Biol., 262, 225–242 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. A. K. Jones and D. B. Sattelle, “The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum,” BMS Genomics, 8, 327 (2007).

    Article  CAS  Google Scholar 

  35. J. Kang, S. Mehta, and F. J. Turano, “The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscissic acid biosynthesis and signaling to control development and water loss,” Plant Cell Physiol., 45, 1380–1389 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. J. Kehoe, “Transformation by concanavalin A of the response of molluscan neurones to L-glutamate,” Nature, 274, 866–869 (1978).

    Article  PubMed  CAS  Google Scholar 

  37. A. Keramidas, A. J. Moorhouse, K. D. Pierce, P. R. Schofield, and P. H. Barry, “Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ioncharge selectivity,” J. Gen. Physiol., 119, 393–410 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. J. H. Kim and R. L. Huganir, “Organization and regulation of proteins at synapses,” Curr. Opin. Cell. Biol., 11, 248–254 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. T. Kuner, L. Wollmuth, A. Karlin, P. H. Seeburg, and B. Sakmann, “Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines,” Neuron, 17, 343–352 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. T. Kuner, C. Beck, B. Sakmann, and P. H. Seeburg, “Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter,” J. Neurosci., 21, 4162–4172 (2001).

    PubMed  CAS  Google Scholar 

  41. N. Kunishima, Y. Shimada, Y. Tsuji, T. Sato, M. Yamamoto, T. Kumasaka, S. Nakanishi, H. Jingami, and K. Morikawa, “Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor,” Nature, 407, 971–977 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. J. T. Littleton, “A genomic analysis of membrane trafficking and neurotransmitter release in Drosophila,” J. Cell Biol., 150, F77–F82 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. J. T. Littleton and B. Ganetzky, Ion channels and synaptic organization: analysis of the Drosophila genome,” Neuron, 26, 35–43 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. S. J. Liu and D. G. Cull-Candy, “Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses,” Nat. Neurosci., 8, 768–775 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. L. G. Magazanik, S. L. Buldakova, M. V. Samoilov, V. E. Gmiro, I. R. Mellor, and P. N. Usherwood, “Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives,” J. Physiol., 505, 655–663 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Ann. Rev. Neurosci., 25, 103–126 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. I. Mano and V. I. Teichberg, “A tetrameric subunit stoichiometry for a glutamate receptor-channel complex,” Neuroreport, 9, 327–331 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. A. Martinez-Torres and R. Miledi, “Expression of functional receptors by the human gamma-aminobutyric acid A gamma 2 subunit,” Proc. Natl. Acad. Sci. USA, 101, 3220–3223 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. M. L. Mayer and N. Armstrong, “Structure and function of glutamate receptor ion channels,” Ann. Rev. Physiol., 66, 161–181 (2004).

    Article  CAS  Google Scholar 

  50. O. Meyerhoff, K. Muller, M. R. Roelfsema, A. Latz, B. Lacombe, R. Hedrich, P. Dietrich, and D. Becker, “AIGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold,” Planta, 222, 418–427 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. N. Nakanishi, N. A. Schneider, and R. A. Axel, “A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties,” Neuron, 5, 569–581 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. R. A. Nicoll and R. C. Malenka, “Expression mechanisms underlying NMDA receptor-dependent long-term potentiation,” Ann. N.Y. Acad. Sci., 868, 515–525 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. K. M. Koh, H. Yokota, T. Mashiko, P. E. Castillo, R. S. Zukin, and M. V. Bennett, “Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death,” Proc. Natl. Acad. Sci. USA, 102, 12,230–12,235 (2005).

    Google Scholar 

  54. M. Nuriya, S. Oh, and R. L. Huganir, “Phosphorylation-dependent interactions of alpha-Actinin-1/IQGAP1 with the AMPA receptor subunit GluR4,” J. Neurochem., 95, 544–552 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. S. Oiki, W. Danho, and M. Montal, “Channel protein engineering: synthetic 22-mer peptide from the primary structure of the voltagesensitive sodium channel forms ionic channels in lipid bilayers,” Proc. Natl. Acad. Sci. USA, 85, 2393–2397 (1988).

    Article  PubMed  CAS  Google Scholar 

  56. V. A. Panchenko, C. R. Glasser, and M. L. Mayer, “Structural similarities between glutamate receptor channels and K+ channels examined by scanning mutagenesis,” J. Gen. Physiol., 117, 345–360 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. D. E. Pellegrini-Giampietro, J. A. Gorter, M. V. Bennett, and R. S. Zukin, “The GluR1 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders,” Trends Neurosci., 20, 464–470 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. A. Pohorille, K. Schweighofer, and M. A. Wilson, “The origin and early evolution of membrane channels,” Astrobiology, 5, 1–17 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. G. Qin, T. Schwarz, R. J. Kittel, A. Schmid, T. M. Rasse, D. Kappei, E. Ponimaskin, M. Heckmann, and S. J. Sigrist, “Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila,” J. Neurosci., 25, 3209–3218 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. K. W. Roche, L. A. Raymond, C. Blackstone, and R. L. Huganir, Transmembrane topology of the glutamate receptor subunit GluR6,” J. Biol. Chem., 269, 11,679–11,682 (1994).

    CAS  Google Scholar 

  61. K. W. Roche, W. G. Tingley, and R. L. Huganir, “Glutamate receptor phosphorylation and synaptic plasticity,” Curr. Opin. Neurobiol., 4, 383–388 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. C. Rosenmung, Y. Stern Bach, and C. F. Stevens, “The tetrameric structure of a glutamate receptor channel,” Science, 280, 1596–1599 (1998).

    Article  Google Scholar 

  63. O. Sakarya, K. A. Armstrong, M. Adamska, M. Adamski, I. F. Wang, B. Tidor, B. M. Degnan, T. H. Oakley, and K. S. Kosik, “A postsynaptic scaffold at the origin of the animal kingdom,” PLoS One, 2, 506 (2007).

    Article  CAS  Google Scholar 

  64. M. V. Samoilova, E. V. Frolova, N. N. Potapjeva, I. M. Fedorova, V. E. Gmiro, and L. G. Magazanik, “Channel blocking drugs as tools to study glutamate receptors in insect muscles and molluscan neurons,” Inert. Neurosci., 3, 117–126 (1998).

    Article  Google Scholar 

  65. M. Sheng, “Molecular organization of the postsynaptic specialization,” Proc. Natl. Acad. Sci. USA, 98, 7058–7061 (2001).

    Article  PubMed  CAS  Google Scholar 

  66. J. D. Shepherd and R. L. Huganir, “The cell biology of synaptic plasticity: AMPA receptor trafficking,” Ann. Rev. Cell. Dev. Biol., 23, 613–643 (2007).

    Article  CAS  Google Scholar 

  67. B. Sommer, K. Keinanen, T. A. Verdoorn,W. Wisden, N. Burnashev, A. Herb, M. Kohler, T. Takagi, B. Sakmann, and P. H. Seeburg, “Flip and flop – a cell-specific functional switch in glutamate-operated channels of the CNS,” Science, 249, 1580–1585 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. L. Sornarajah, O. C. Vasuta, L. Zhang, C. Sutton, B. Li, A. El Husseini, and L. A. Raymond, “NMDA receptor desensitization regulated by direct binding to PDZ1-2 domains of PSD-95,” J. Neurophysiol., 99, 3052–3062 (2008).

    Article  PubMed  CAS  Google Scholar 

  69. F. Stiegerwald, T. W. Schultz, L. T. Schenker, M. B. Kennedy, P. H. Seeburg, and G. Kohr, “C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors,” J. Neurosci., 20, 4573–4581 (2000).

    Google Scholar 

  70. G. T. Swsanson, R. W. Gereau, T. Green, and S. F. Heinemann, “Identification of amino acid residues that control functional behavior in GluRS and GluR6 kainate receptors,” Neuron, 19, 913–926 (1997).

    Article  Google Scholar 

  71. S. L. Swope, S. J. Moss, C. D. Blackstone, and R. L. Huganir, “Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity,” FASEB J., 6, 2514–2523 (1992).

    PubMed  CAS  Google Scholar 

  72. W. G. Tingley, K. W. Roche, A. K. Thompson, and R. L. Huganir, “Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain,” Nature, 364, 70–73 (1993).

    Article  PubMed  CAS  Google Scholar 

  73. W. G. Tingley, K. W. Roche, A. K. Thompson, and R. L. Hunagir, “Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels,” J. Mol. Evol., 44, 501–508 (1997).

    Article  Google Scholar 

  74. M. S. Washburn, M. Numberger, S. Zhang, and R. Dingledine, “Differential dependence on GluR2 expression of three characteristic features of AMPA-receptors,” J. Neurosci., 17, 9393–9406 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Magazanik.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 9, pp. 989–1004, September, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonov, D.B., Magazanik, L.G. Origin and Molecular Evolution of Ionotropic Glutamate Receptors. Neurosci Behav Physi 39, 763–773 (2009). https://doi.org/10.1007/s11055-009-9195-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9195-6

Key words

Navigation