Skip to main content
Log in

The Prokaryotic Origin and Evolution of Eukaryotic Chemosignaling Systems

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Analysis of our own results and data published over the last two decades supports the authors’ hypothesis of the prokaryotic origin and endosymbiotic mechanism of appearance of chemosignaling systems in higher eukaryotes. Comparison of the structural-functional organization of these information systems and their component blocks (receptors, GTP-binding proteins, enzymes with cyclase activity, protein kinases, etc.) in bacteria and eukaryotes revealed a whole series of similar characteristics pointing to evolutionary relatedness. This led to the conclusion that eukaryotic signal systems have prokaryotic roots. In terms of their architecture and functional properties, the signal transduction systems seen in unicellular eukaryotes represent a transitional stage in the evolution of chemosignaling systems between prokaryotes and higher eukaryotes. The propagation of chemosignaling systems in three kingdoms – Bacteria, Archaea, and Eukarya – occurred by horizontal transfer of bacterial genes and the coevolution of the components of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Markov and A. M. Kulikov, “Homologous protein domains in the superkingdoms Archaea, Bacteria, and Eukaryota and the question of the origin of eukaryotes,” Izv. Ros. Akad. Nauk. Ser. Biol., 4, 389–400 (2005).

    Google Scholar 

  2. M. N. Pertseva, Molecular Bases of the Development of Hormone Competence [in Russian], Nauka, Leningrad (1989).

    Google Scholar 

  3. M. N. Pertseva, “Is there an evolutionary relationship between the chemosignaling systems of eukaryotes and prokaryotes?” Zh. Évolyuts. Biokhim. Fiziol., 26, 505–513 (1990).

    CAS  Google Scholar 

  4. M. N. Pertseva and A. O. Shpakov, “Chemosignaling systems of unicellular eukaryotes and bacteria as precursors of the hormone competent systems of higher animals,” Zh. Évolyuts. Biokhim. Fiziol., 29, 447–467 (1993).

    CAS  Google Scholar 

  5. M. N. Pertseva and A. O. Shpakov, “Conservation of the insulin signaling system during the evolution of invertebrates and vertebrates,” Zh. Évolyuts. Biokhim. Fiziol., 38, 430–441 (2002).

    CAS  Google Scholar 

  6. A. O. Shpakov, “Structural-functional organization of G-protein-linked signal systems in the ameba Dictyostelium discoideum,” Zh. Évolyuts. Biokhim. Fiziol., 42, 426–444 (2006).

    CAS  Google Scholar 

  7. A. O. Shpakov, “Serpentine-type receptors and heterotrimeric G proteins in yeast-like fungi: structural-functional organization and molecular mechanisms of action,” Zh. Évolyuts. Biokhim. Fiziol., 43, 3–23 (2007).

    CAS  Google Scholar 

  8. A. O. Shpakov, “Structural-functional organization of adenylyl cyclases in unicellular eukaryotes,” Tsitologiya, 49, 91–106 (2006).

    Google Scholar 

  9. A. O. Shpakov, “Guanylate cyclases of unicellular eukaryotes: structure, function, and regulatory properties,” Tsitologiya, 49, 617–630 (2007).

    CAS  Google Scholar 

  10. O. A. Shpakov, K. V. Derkach, and M. N. Pertseva, “The hormonal system s of lower eukaryotes,” Tsitologiya, 45, 223–234 (2003).

    CAS  Google Scholar 

  11. A. O. Shpakov, K. V. Derkach, Z. I. Uspenskaya, L. A. Kuznetsova, S. A. Plesneva, and M. N. Pertseva, “Regulation by biogenic amines and peptide hormones of adenylyl cyclase and protein kinase A activities in the infusoria Dileptus anser and Tetrahymena pyriformis,” Dokl. Ros. Akad. Nauk., 388, 275–277 (2003).

    Google Scholar 

  12. A. O. Shpakov, K. V. Derkach, Z. I. Uspenskaya, E. A. Shpakova, L. A. Kuznetsova, S. A. Plesneva, and M. N. Pertseva, “Regulation of the adenylyl cyclase signaling system by peptides of the insulin superfamily in cell cultures of the infusoria Dileptus anser and Tetrahymena pyriformis,” Zh. Évolyuts. Biokhim. Fiziol., 40, 290–297 (2004).

    CAS  Google Scholar 

  13. A. O. Shpakov, K. V. Derkach, Z. I. Uspenskaya, E. A. Shpakova, L. A. Kuznetsova, S. A. Plesneva, and M. N. Pertseva, “Molecular mechanisms of the regulatory action of adrenergic receptor agonists on the functional activity of the adenylyl cyclase signaling system in the infusoria Dileptus anser and Tetrahymena pyriformis,” Tsitologiya, 46, 317–325 (2004).

    CAS  Google Scholar 

  14. A. O. Shpakov and M. N. Pertseva, “Signal transduction systems in prokaryotes,” Zh. Évolyuts. Biokhim. Fiziol., 44, 113–130 (2008).

    Google Scholar 

  15. A. O. Shpakov, S. A. Plesneva, L. A. Kuznetsova, and M. N. Pertseva, “Studies of the functional organization of a novel adenylyl cyclase signaling mechanism for insulin action,” Biokhimiya, 67, 403–412 (2002).

    Google Scholar 

  16. A. O. Shpakov, Z. I. Uspenskaya, K. V. Derkach, L. A. Kuznetsova, S. A. Plesneva, and M. N. Pertseva, “Regulatory effects of calcium on the functional activity of adenylyl cyclase in the infusorium Dileptus anser,” Zh. Évolyuts. Biokhim. Fiziol., 43, 109–115 (2007).

    Google Scholar 

  17. E. Alvarez-Curto, D. E. Rozen, A. V. Ritchie, C. Fouquet, and P. Schaap, “Evolutionary origin of cAMP-based chemoattraction in the social amoebae,” Proc. Natl. Acad. Sci. USA, 102, 6385–6390 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. J. L. Appleby, J. S. Parkinson, and R. B. Bourret, “Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled,” Cell, 86, 845–848 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. L. Aravind, V. Anantharaman, and L. M. Iyer, “Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective,” Curr. Opin. Microbiol., 6, 490–497 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. C. J. Bakal and J. E. Davis, “No longer an exclusive club: eukaryotic signaling domains in bacteria,” Trends Cell Biol., 10, 32–38 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. D. A. Baker, “Adenylyl and guanylyl cyclases from the malaria parasite Plasmodium falciparum,” IUBMB Life, 56, 535–540 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. D. A. Baker and J. M. Kelly, Structure, function, and evolution of microbial adenylyl and guanylyl cyclases,” Mol. Microbiol., 52, 1229–1242 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. A. Camilli and B. L. Bassler, “Bacterial small-molecule signaling pathways,” Science, 311, 1113–1116 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. S. D. Dyall, M. T. Brown, and P. J. Johnson, “Ancient invasions: from endosymbionts to organelles,” Science, 304, 253–257 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. L. Ellis, D. O. Morgan, D. E. Koshland, E. Clauser, G. R. Moe, G. Bollag, R. A. Roth, and W. I. Rutter, “Linking functional domains at the human insulin receptor with the bacterial aspartate receptor,” Proc. Natl. Acad. Sci. USA, 83, 8137–8141 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. J. J. Falker and G. L. Hazelbauer, “Transmembrane signalling in bacterial chemoreceptors,” Trends Biochem. Sci., 26, 257–265 (2001).

    Article  Google Scholar 

  27. M. Y. Galperin, “A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extraverts and introverts,” BMC Microbiol., 5, 35 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. A. H. Geiser, M. K. Sievert, L. W. Guo, J. E. Grant, M. P. Krebs, D. Fotiadis, A. Engel, and A. E. Ruoho, “Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange,” Protein Sci., 15, 1679–1690 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. T. Harashima and J. Heitman, “Gα subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae,” Mol. Biol. Cell., 16, 4557–4571 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Kimura,Y. Mishima, H. Nakano, and K. Takegawa, An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress,” J. Bacteriol., 184, 3578–3585 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. Y. Kimura, M. Ohtani, and K. Takegawa, “An adenylyl cyclase, CyaB, acts as an osmosensor in Myxococcus xanthus,” J. Bacteriol., 187, 3593–3598 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. K. K. Koretke, A. N. Lupas, P. V. Warren, M. Rosenberg, and J. R. Brown, Evolution of two-component signal transduction,” Mol. Biol. Evol., 17, 1956–1970 (2000).

    PubMed  CAS  Google Scholar 

  33. J. Lee, A. Jayarama, and T. K. Wood, “Indole is an inter-species biofilm signal mediated by SdiA,” BMC Microbiol., 7, 42 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. C. J. Leonard, L. Aravind, and E. V. Koonin, “Novel families of putative protein kinases in bacteria and Archaea: evolution of the ‘eukaryotic’ protein kinase superfamily,” Genome Res., 8, 1038–1047 (2006).

    Google Scholar 

  35. J. U. Linder and J. E. Schulz, “Guanylyl cyclases in unicellular organisms,” Mol. Cell. Biochem., 230, 149–158 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. C. L. Manahan, P. A. Iglesias, Y. Long, and P. N. Devreotes, “Chemoattractant signaling in Dictyostelium discoideum,” Ann. Rev. Cell. Dev. Biol., 20, 223–253 (2004).

    Article  CAS  Google Scholar 

  37. L. Margulis, Symbiosis in Cell Evolution: Life and its Environment on Earth, W. H. Freeman and Company, San Francisco (1981).

    Google Scholar 

  38. L. Margulis, “Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life,” Proc. Natl. Acad. Sci. USA, 93, 1071–1076 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. L. Margulis, “The conscious cell,” Ann. N.Y. Acad. Sci., 929, 55–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. L. Margulis, M. F. Dolan, and R. Guerrero, “The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondrial protists,” Proc. Natl. Acad. Sci. USA, 97, 6954–6959 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. G. R. Moe, G. E. Bollag, and D. E. Koshland, “Transmembrane signaling by a chimer of the Escherichia coli aspartate receptor and thehuman insulin receptor,” Proc. Natl. Acad. Sci. USA, 86, 5683–5687 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. K. Natarajan, C. A. Ashley, and J. A. Hadwiger, “Related Gα subunits play opposing roles during Dictyostelium development,” Differentiation, 66, 136–146 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. T. Niranjan, X. Guo, J. Victor, A. Lu, and J. P. Hirsch, “Kelch repeat protein interacts with the yeast Goc subunit Gpa2p at a site that couples receptor binding to guanine nucleotide exchange,” J. Biol. Chem., 282, 24,231–24,238 (2007).

    Article  CAS  Google Scholar 

  44. M. N. Pertseva, “The evolution of hormonal signaling systems,” Comp. Biochem. Physiol., 100, 775–787 (1991).

    Article  CAS  Google Scholar 

  45. M. N. Pertseva, “Enzyme proteins in organization of chemosignaling systems,” in: Organization of Biochemical Systems, B. Kurganov and A. Lyubarev (eds.), Nova Sci. Publ. Inc., Moscow (1996), pp. 219–245.

    Google Scholar 

  46. M. N. Pertseva and A. O. Shpakov, “On the prokaryotic genesis of hormonal signaling systems of eukaryotes,” in: Evolutionary Biochemistry and Related Areas of Physicochemical Biology, B. Poglazov et al. (eds.), Bach Institute of Biochemistry and ANKO, Moscow (1995), pp. 509–519.

  47. M. N. Pertseva, A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, and E. V. Omeljaniuk, “Adenylyl cyclase signaling mechanisms of relaxin and insulin action: similarities and differences,” Cell Biol. Int., 30, 533–540 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. M. N. Pertseva,A. O. Shpakov, S. A. Plesneva, and L. A. Kuznetsova, “A novel view on the mechanisms of action of insulin and other insulin superfamily peptides: involvement of adenylyl cyclase signaling system,” Comp. Biochem. Physiol., 134, 11–36 (2003).

    CAS  Google Scholar 

  49. S. A. Plesneva,A. O. Shpakov, L. A. Kuznetsova, and M. N. Pertseva, “A dual role of protein kinase C in insulin signal transduction via adenylyl cyclase signaling system in muscle tissues of vertebrates and invertebrates,” Biochem. Pharmacol., 61, 1277–1291 (2001).

    Article  PubMed  CAS  Google Scholar 

  50. Y. Prabhu, R. Muller, and A. A. Noegel, “GrlJ, a Dictyostelium GABAB-like receptor with roles in post-aggregation development,” BMC Dev. Biol., 7, 44 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. R. B. Raffa, J. R. Iannozzo, D. R. Levine, K. K. Saeid, C. R. Schwartz, N. T. Sucic, O. D. Terleckyj, and J. M. Young, “Bacterial communication (Quorum sensing) via ligands and receptors. A novel pharmacological target for the design of antibiotic drugs,” J. Pharmacol. Exptl. Ther., 312, 417–423 (2005).

    Article  CAS  Google Scholar 

  52. N. C. Reading and V. Sperando, “Quorum sensing: the many languages of bacteria,” FEMS Microbiol. Lett., 254, 1–11 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. J. Roelofs, H. Snippe, R. G. Kleineidam, and P. J. Van Haastert, “Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase,” Biochem. J., 354, 697–706 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. M. Roginskaya, S. M. Connelly, K. S. Kim, D. Patel, and M. E. Dumont, “Effects of mutations in the N terminal region of the yeast G protein a-subunit Gpa1p on signaling by pheromone receptors,” Mol. Gen. Genomics, 271, 237–248 (2004).

    Article  CAS  Google Scholar 

  55. R. Seebeck, R. Schaub, and A. Johner, “cAMP signalling in the kinetoplastid protozoa,” Curr. Mol. Med., 4, 585–599 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. L. Shi, M. Potts, and P. J. Kennedy, “The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait,” FEMS Microbiol. Rev., 22, 229–253 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, A. P. Kolychev, V. M. Condareva, O. V. Chistyakova, and M. N. Pertseva, “Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin action in skeletal muscles of rat with streptozotocin type 1 diabetes,” Cent. Eur. J. Biol., 1, 530–544 (2006).

    Article  CAS  Google Scholar 

  58. A. Shpakov, M. Pertseva, L. Kuznetsova, and S. Plesneva, “A novel, adenylate cyclase, signaling mechanism of relaxin H2 action,” Ann. N.Y. Acad. Sci., 1041, 305–307 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. J. E. Slessareva and H. G. Dohlman, “G protein signaling in yeast: new components, new connections, and new compartments,” Science, 314, 1412–1413 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. P. Thomason and R. Kay, “Eukaryotic signal transduction via histidine-aspartate phosphorelay,” J. Cell. Sci., 113, 3141–3150 (2000).

    PubMed  CAS  Google Scholar 

  61. P. Thomason, D. Traynor, J. B. Stock, and R. R. Kay, “The RdeA-RegA system, a eukaryotic phosphorelay controlling cAMP breakdown,” J. Biol. Chem., 274, 27,379–27,384 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 94, No. 9, pp. 1029–1047, September, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertseva, M.N., Shpakov, A.O. The Prokaryotic Origin and Evolution of Eukaryotic Chemosignaling Systems. Neurosci Behav Physi 39, 793–804 (2009). https://doi.org/10.1007/s11055-009-9190-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-009-9190-y

Key words

Navigation