Skip to main content
Log in

The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The effects of the cutaneous input on the formation of the locomotor pattern in conditions of epidural stimulation of the spinal cord in decerebrate cats were studied. Locomotor activity was induced by rhythmic stimulation of the dorsal surface of spinal cord segments L4–L5 at a frequency of 3–5 Hz. Electromyograms (EMG) recorded from the antagonist muscles quadriceps, semitendinosus, tibialis anterior, and gastrocnemius lateralis were recorded, along with the kinematics of stepping movements during locomotion on a moving treadmill and reflex responses to single stimuli. Changes in the pattern of reactions observed before and after exclusion of cutaneous receptors (infiltration of lidocaine solution at the base of the paw or irrigation of the paw pads with chlorothane solution) were assessed. This treatment led to impairment of the locomotor cycle: the paw was placed with the rear surface downward and was dragged along in the swing phase, and the duration of the stance phase decreased. Exclusion of cutaneous afferents suppressed the polysynaptic activity of the extensor muscles and the distal flexor muscle of the ipsilateral hindlimb during locomotion evoked by epidural stimulation of the spinal cord. The effects of exclusion of cutaneous afferents on the monosynaptic component of the EMG response were insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Gerasimenko, A. N. Makarovskii, and O. A. Nikitin, “Control of locomotor activity in humans and animals in the absence of suprasylvian influences,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, 1502–1511 (2000).

    Google Scholar 

  2. Yu. P. Gerasimenko, V. D. Avelev, O. A. Nikitin, and I. A. Lavrov, “Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord,” Ros. Fiziol. Zh. im. I. M. Sechenova, 87, 1164–1170 (2001).

    Google Scholar 

  3. Yu. P. Gerasimenko, “Stepping movement generators in humans: spinal activation mechanisms,” Aviakosmich. Ékol. Med., 36, No. 3, 14–24 (2002).

    Google Scholar 

  4. Yu. P. Gerasimenko, I. A. Lavrov, I. N. Bogacheva, N. A. Shcherbakova, V. I. Kucher, and P. E. Musienko, “Characteristics of the formation of locomotor patterns in decerebrate cats on epidural stimulation of the spinal cord,” Ros. Fiziol. Zh. im. I. M. Sechenova, 89, 1046–1057 (2003).

    Google Scholar 

  5. A. I. Grigor’ev, I. B. Kozlovskaya, and B. S. Shenkman, “Role of maintenance afferentation in organizing the tonic muscle system,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 5, 508–521 (2004).

    CAS  Google Scholar 

  6. M. L. Shik, “The locomotor area of the brainstem and the ‘locomotor column’ hypothesis,” Usp. Fiziol. Nauk., 16, 76–95 (1985).

    PubMed  CAS  Google Scholar 

  7. A. M. Aniss, S. C. Dandieva, and D. Burke, “Reflex responses in active muscles elicited by stimulation of low-threshold afferents from the human foot,” J. Neurophysiol., 67, 1375–1384 (1992).

    PubMed  CAS  Google Scholar 

  8. L. J. Bouyer and S. Rossignol, “Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats,” J. Neurophysiol., 90, 3625–3639 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. L. J. Bouyer and S. Rossignol, “Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats,” J. Neurophysiol., 90, 3640–3653 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. B. A. Conway, D. T. Scott, and J. S. Riddell, “The effects of plantar nerve stimulation on long latency flexion reflexes in the acute spinal cat,” in: Alpha and Gamma Motor Systems, A. Taylor, M. N. Gladden, and R. Durbada (eds.), Plenum Press (1995), pp. 593–595.

  11. J. Duysens and K. G. Pearson, “The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats,” Exptl. Brain Res., 24, 245–255 (1976).

    Article  CAS  Google Scholar 

  12. J. Duysens, “Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats,” J. Neurophysiol., 40, 737–751 (1977).

    PubMed  CAS  Google Scholar 

  13. M. D. Egger and P. D. Wall, “The plantar cushion reflex circuit: an oligosynaptic cutaneous reflex,” J. Physiol., 216, 483–501 (1971).

    PubMed  CAS  Google Scholar 

  14. J. B. Fallon, L. R. Bent, P. A. McNulty, and V. G. Macefield, “Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles,” J. Neurophysiol., 94, 3795–3804 (2005).

    Article  PubMed  Google Scholar 

  15. H. Forssberg, S. Grillner, and S. Rossignol, “Phase dependent reflex reversal during walking in chronic spinal cats,” Brain Res., 85, 103–107 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. H. Forssberg, “Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion,” J. Neurophysiol., 42, 936–953 (1979).

    PubMed  CAS  Google Scholar 

  17. Y. P. Gerasimenko, I. A. Lavrov, I. N. Bogacheva, N. A. Scherbakova, V. I. Kucher, and P. E. Musienko, “Formation of locomotor patterns in decerebrate cats in conditions of epidural stimulation of the spinal cord,” Neurosci. Behav. Physiol., 35, No. 3, 291–298 (2005).

    PubMed  Google Scholar 

  18. Y. P. Gerasimenko, I. A. Lavrov, G. Courtine, R. M. Ichiyama, C. J. Dy, H. Zhong, R. R. Roy, and V. R. Edgerton, “Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats,” J. Neurosci. Meth., 157, No. 2, 253–263 (2006).

    Article  Google Scholar 

  19. Yu. Gerasimenko, A. Garbuz, A. Makarovsky, and Yu. Shapkov, “Effects of spinal cord stimulation on posture and gait in spinal patients,” in: Posture and Gait: Control Mechanisms (1992), pp. 372–375.

  20. Yu. Gerasimenko and A. Makarovsky, “Neurophysiological evaluation of the effects of spinal cord stimulation in spinal patients,” in: Motor Control VII, D. G. Stuart, G. N. Gantchev, V. S. Gurfinkel, and M. Wiesendanger (eds.), Motor Control Press, Tucson (1996), pp. 153–157.

    Google Scholar 

  21. Yu. P. Gerasimenko, W. B. McKay, F. E. Pollo, and M. R. Dmitrijevic, “Stepping movements in paraplegic patients induced by epidural spinal cord stimulation,” Soc. Neurosci. Abstr., 22, 543–545 (1996).

    Google Scholar 

  22. G. W. Hiebert and K. G. Pearson, “Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat,” J. Neurophysiol., 81, No. 2, 758–770 (1999).

    PubMed  CAS  Google Scholar 

  23. J. P. Grossard, J. N. Cabelguen, and S. Rossignol, “Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat,” Brain Res., 24, No. 1–2, 14–23 (1990).

    Article  Google Scholar 

  24. P. Guertin, M. Angel, M. C. Perreault, and D. A. McCrea, “Ankle extensor group I afferents excite extensors throughout the hindlimb during MLR-evoked fictive locomotion in the cat,” J. Physiol., 487, 197–210 (1995).

    PubMed  CAS  Google Scholar 

  25. J. F. Iles, “Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of 1a afferents from the human lower limb,” J. Physiol., 491, No. 1, 197–207 (1996).

    PubMed  CAS  Google Scholar 

  26. T. Iwahara, Y. Atsuta, E. Garsia-Hill, and R. Skinner, “Locomotion induced by spinal cord stimulation in the neonate rat in vitro,” Somatosens. Mot. Res., 8, No. 3, 281–287 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. M. Knikou, “Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury,” Exptl. Brain Res., DOI: 10.1007/s00221-005-0046-6 (2005).

  28. D. A. McCrea, S. J. Shefchyk, M. J. Stephens, and K. G. Pearson, “Disynaptic group I excitation of synergistic ankle extensor motoneurones during fictive locomotion,” J. Physiol., 487, 527–540 (1995).

    PubMed  CAS  Google Scholar 

  29. P. A. McNulty and V. G. Macefield, “Modulation of ongoing EMG by different classes of low-threshold mechanoreceptors in the human hand,” J. Physiol., 537, No. 3, 1021–1032 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. A. Menard, H. Leblond, and J. P. Gossard, “Modulation of monosynaptic transmission by presynaptic inhibition during fictive locomotion in the cat,” Brain Res., 964, No. 1, 67–82 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. A. I. Netreba, D. R. Khusnutdinova, O. L. Vinogradova, and I. B. Kozlovskaya, “Effect of dry immersion in combination with stimulation of foot support zones upon muscle force-velocity characteristics,” J. Gravit. Physiol., 11, 129–130 (2004).

    Google Scholar 

  32. K. G. Pearson, “Proprioceptive regulation of locomotion,” Curr. Opin. Neurobiol., 5, 786–791 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. M. C. Perreault, S. J. Shefchyk, I. Jumenez, and D. A. McCrea, “Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat,” J. Physiol., 521, No. 3, 691–703 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. S. Rossignol, R. Dubuc, and J. P. Gossard, “Dynamic sensorimotor interactions in locomotion,” Physiol. Rev., 86, 89–154 (2006).

    Article  PubMed  Google Scholar 

  35. P. Rudomin, “Presynaptic control of synaptic effectiveness of muscle spindle and tendon organ afferents in the mammalian spinal cord,” in: The Segmental Motor System, Oxford University Press, M. C. Binder and L. M. Medell (eds.), Oxford (1990), pp. 349–380.

  36. E. D. Schomburg, “Spinal functions in sensorimotor control of movements,” Neurosurg. Rev., 13, No. 3, 179–185 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. E. D. Schomburg, H. Steffens, and K. D. Kniffki, “Contribution of group III and IV muscle afferents to multisensorial spinal motor control in cats,” Neurosci. Res., 33, 195–206 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. B. S. Shenkman, K. S. Litvinova, T. I. Nemirovskaya, Z. A. Podlubnaya, I. M. Vikhlyantsev, and I. B. Kozlovskaya, “Afferents and peripheral control of muscle fiber properties during gravitational unloading, ” J. Gravit. physiol., 11, 111–114 (2004).

    Google Scholar 

  39. H. Steffens and E. D. Schomburg, “Convergence in segmental reflex pathways from nociceptive and non-nociceptive afferents to alpha-motoneurones in the cat,” J. Physiol., 466, 191–211 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Gerasimenko.

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 10. pp. 1112–1122, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorofeev, I.Y., Avelev, V.D., Shcherbakova, N.A. et al. The role of cutaneous afferents in controlling locomotion evoked by epidural stimulation of the spinal cord in decerebrate cats. Neurosci Behav Physi 38, 695–701 (2008). https://doi.org/10.1007/s11055-008-9034-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9034-1

Key Words

Navigation