Skip to main content

Advertisement

Log in

Morphological characteristics of apoptosis and its significance in neurogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Results from our own studies and published data are used to provide a critical analysis of current views of the role of apoptosis in regulating the quantitative and qualitative constancy of cells in the developing brain. Detailed descriptions of the morphological features and mechanisms of the different phases of apoptotic neuron death are given. Apoptosis affects the ordering of connections in neural networks and is involved in the pathogenesis of neurodegenerative diseases — epilepsy, schizophrenia, and Alzheimer’s disease. The question of the interaction of the NO-ergic mechanism and the cell in executing apoptosis is discussed. The data allow NO to be regarded as a cytotoxic factor which induces apoptosis. The ultrastructural features of post-mitotic immature neurons suggests the operation of the apoptotic and necrosis-like (NO-dependent) pathways of natural cell death during the process of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Bakeeva, “Mitochondrial ultrastructure in apoptosis,” Tsitologiya, 45, No. 9, 847–848 (2003).

    Google Scholar 

  2. B. Brune, K. Sandau, and A. Von Kneten, “Apoptotic cell death and nitric oxide: mechanisms of activation and antagonistic signal pathways (review),” Biokhimiya, 63, No. 7, 966–975 (1998).

    Google Scholar 

  3. L. V. Domnina, O. Yu. Ivanova, E. A. Fetisova, et al., “Marginal blebbing as an early sign of apoptosis induced by TNF,” Tsitologiya, 45, No. 9, 870–871 (2003).

    Google Scholar 

  4. S. G. Kalinichenko and P. A. Motavkin, The Cerebellar Cortex [in Russian], Nauka, Moscow (2005).

    Google Scholar 

  5. S. G. Kalinichenko and V. E. Okhotin, “Unipolar bush cells — a new type of excitatory interneuron in the cerebellar cortex and cochlear brainstem nuclei,” Morfologiya, 124, No. 6, 7–21 (2003).

    CAS  Google Scholar 

  6. L. I. Korochkin and A. G. Mikhailov, Introduction to Neurogenetics [in Russian], Nauka, Moscow (2000).

    Google Scholar 

  7. E. F. Lushnikov and A. Yu. Abrosimov, Cell Death (Apoptosis) [in Russian], Meditsina, Moscow (2001).

    Google Scholar 

  8. N. Yu. Matveeva, “Apoptosis: morphological characteristics and molecular mechanisms,” Tikhookeansk. Med. Zh., No. 4, 12–16 (2003).

  9. N. Yu. Matveeva, “Ultrastructural characteristics of the apoptosis of retinal ganglion cells in the human fetus,” Tikhookeansk. Med. Zh., No. 3, 21–23 (2004).

  10. N. Yu. Matveeva, Apoptosis and Nitric Oxide in the Development of Retinal Neurons [in Russian], Meditsina DV, Vladivostok (2006).

    Google Scholar 

  11. N. Yu. Matveeva, S. G. Kalinichenko, I. I. Pushchin, and P. A. Motavkina, “The role of nitric oxide in the apoptosis of retinal neurons in the human fetus,” Morfologiya, 123, No. 1, 42–49 (2006).

    Google Scholar 

  12. V. M. Mikhailov, “Ultrastructural and morphometric analysis of the stages of apoptosis in mouse cardiomyocytes,” Tsitologiya, 43, No. 8, 729–737 (2001).

    CAS  Google Scholar 

  13. D. V. Nagaeva, A. V. Akhmadeev, and L. B. Kalimullina, “Characteristics of neuron ultrastructure in the reticular nucleus of the thalamus in WAG/Rij rats,” Tsitologiya, 47, No. 6, 487–493 (2005).

    CAS  Google Scholar 

  14. V. E. Okhotin and S. G. Kalinichenko, “Interstitial cells of the subcortical white matter, their connections, neurochemical specialization, and role in cortical histogenesis,” Morfologiya, 121, No. 1, 7–26 (2002).

    CAS  Google Scholar 

  15. V. E. Okhotin and S. G. Kalinichenko, “Neurons of layer I and their significance in neocortical embryogenesis,” Morfologiya, 122, No. 4, 7–26 (2002).

    CAS  Google Scholar 

  16. M. A. Pal’tsev, “The molecular basis of apoptosis,” Vestn. Ros. Akad. Med. Nauk, 72, No. 1, 13–21 (2002).

    Google Scholar 

  17. V. P. Reutov, “Medical-biological aspects of the nitric oxide and superoxide anion radical cycles,” Izv. Akad. Med. Nauk, No. 4, 35–41 (2000).

    Google Scholar 

  18. L. V. Sladkova, E. V. Moskaleva, and G. A. Posypanova, “Apoptosis of cells of different lines and the characteristics of internucleosomal DNA fragmentation in cells: connection with the cell cycle,” Tsitologiya, 42, No. 3, 309 (2000).

    Google Scholar 

  19. Yu. A. Chelyshev, G. V. Cherepnev, and K. I. Saitkulov, “Apoptosis in the nervous system,” Ontogenez, 32, No. 2, 118–129 (2001).

    PubMed  Google Scholar 

  20. A. A. Yarilin, “Apoptosis. Nature of the phenomenon and its role in bodily integrity,” Pat. Physiol., No. 2, 38–48 (1998).

  21. S. Akbarian, J. J. Kim, S. G. Potkin, et al., “Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients,” Arch. Gen. Psych., 53, 425–436 (1996).

    CAS  Google Scholar 

  22. J. E. Albina and J. S. Reichner, “Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis,” Cancer Metastasis Rev., 17, 39–53 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. N. C. Andreasen, “Schizophrenia: the fundamental questions,” Brain Res. Rev., 31, 106–112 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. T. Arendt, “Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization,” Neurosci., 102, 723–765 (2001).

    Article  CAS  Google Scholar 

  25. K. J. Banasiak, Y. Xia, and G. G. Haddad, “Mechanisms underlying hypoxia-induced neuronal apoptosis,” Prog. Neurobiol., 62, 215–249 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. G. L. Barrett, “The p75 neurotrophin receptor and neuronal apoptosis,” Prog. Neurobiol., 61, 205–229 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. J. S. Beckman, “The physiology and pathophysiological chemistry of nitric oxide,” in: Nitric Oxide: Principles and Actions, Academic Press, San Diego (1996), pp. 1–82.

    Google Scholar 

  28. T. G. Bivona, S. E. Quatela, B. O. Bodemann, et al., “PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XI on mitochondria and induces apoptosis,” Mol. Cell, 21, 481–493 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. V. Borutaite, R. Morkuniene, and G. C. Brown, “Nitric oxide donors, nitrosothiols and mitochondrial respiration inhibitors induce caspase activation by different mechanisms,” FEBS Lett., 467, 155–159 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. J. R. Brorson, P. T. Schumacker, and H. Zhang, “Nitric oxide acutely inhibits neuronal energy production,” J. Neurosci., 19, 147–158 (1999).

    PubMed  CAS  Google Scholar 

  31. J. Busciglio and B. A. Yankner, “Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro,” Nature, 18, 379–383 (1995).

    Google Scholar 

  32. I. H. Chae, K. W. Park, H. S. Kim, and B. H. Oh, “Nitric oxide-induced apoptosis is mediated by Bax/Bcl-2_gene expression, transition of cytochrome c, and activation of caspase-3 in rat vascular smooth muscle cells,” Clin. Chim. Acta, 341, 83–91 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. E. Y. Chung, S. J. Kim, and X. J. Max, “Regulation of cytokine production during phagocytosis of apoptotic cells,” Cell Res., 16, 154–161 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. D. Cuitat, J. Caldero, R. Oppenheim, et al., “Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo,” J. Neurosci., 12, 3979–3990 (1996).

    Google Scholar 

  35. J. J. Cohen, “Apoptosis: the physiologic pathway of cell death,” Hosp. Pract., 28, 35–43 (1993).

    CAS  Google Scholar 

  36. A. Contestabile, “Roles of NMDA receptor activity and nitric oxide production in brain development,” Brain Res. Rev., 32, 476–509 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. C. Culmsee, C. Zhu, S. Landshamer, et al., “Apoptosis-inducing factor triggered by poly(ADP-Ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia,” J. Neurosci., 25, 10262–10272 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. F. D’Acquisto, F. de Cristofaro, M. C. Maiuri, et al., “Protective role of nuclear factor kappa B against nitric oxide-induced apoptosis in J774 macrophages,” Cell Death Differ., 8, 1441–151 (2001).

    Article  CAS  Google Scholar 

  39. T. M. Dawson and S. H. Snyder, “Gases as biological messengers: nitric oxide and carbon monoxide in the brain,” J. Neurosci., 14, 5147–5159 (1994).

    PubMed  CAS  Google Scholar 

  40. M. F. DeFreitas, P. S. McQuillen, and C. J. Shatz, “A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons,” J. Neurosci., 21, 5121–5129 (2001).

    PubMed  CAS  Google Scholar 

  41. E. de la Rosa and F. de Pablo, “Cell death in early neural development: beyond the neurotrophic theory,” Trends Neurosci., 23, 454–458 (2000).

    Article  PubMed  Google Scholar 

  42. S. Dimmeler, J. Haendeler, M. Nehis, and A. M. Zeiher, “Suppression of apoptosis by nitric oxide via inhibition of interleukin-1 beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases,” J. Exptl. Med., 185, 601–607 (1997).

    Article  CAS  Google Scholar 

  43. D. Echeverria, C. Vieira, L. Gimeno, and S. Martinez, “Neuroepithelial secondary organizers and cell fate specification in the developing brain,” Brain Res. Rev., 43, 179–191 (2003).

    Article  CAS  Google Scholar 

  44. A. G. Estevez, N. Spear, S. M. Manuel, et al., “Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation,” J. Neurosci., 18, 923–931 (1998).

    PubMed  CAS  Google Scholar 

  45. Z. W. Feng, V. Tan, K. S. Khoo, and K. J. Leck, “NF-kappa B plays a protective role in nitric oxide-induced neuronal apoptosis,” Ann. Acad. Med. Singapore, 32, S30–31 (2003).

    PubMed  CAS  Google Scholar 

  46. K. Ferri, “Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex, role of mitochondria and caspase,” J. Exptl. Med., 192, 1081–1092 (2000).

    Article  CAS  Google Scholar 

  47. W. J. Friedman, “Neurotrophins induce death of hippocampal neurons via the p75 receptor,” J. Neurosci., 20, 6340–6346 (2000).

    PubMed  CAS  Google Scholar 

  48. S. Glockzin, A. von Knethen, M. Scheffner, and B. Brune, “Activation of the cell death program by nitric oxide involves inhibition of the proteasome,” J. Biol. Chem., 274, 19581–19586 (1999).

    Article  PubMed  CAS  Google Scholar 

  49. L. Groc, T. J. Hunter, J. Jiang, L. Bezin, et al., “Nitric oxide synthase inhibition during development: effect on apoptotic death of dopamine neurons,” Devl. Brain Res., 138, 147–153 (2002).

    Article  CAS  Google Scholar 

  50. T. F. Haydar, C.-Y. Kuan, R. A. Flavell, and P. Rakic, “The role of cell death in regulating the size and shape of the mammalian forebrain,” Cereb. Cortex, 9, 621–626 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. C. E. Henderson, “Programmed cell death in the developing nervous system,” Neuron, 17, 579–585 (1996).

    Article  PubMed  CAS  Google Scholar 

  52. O. M. Hengarten, “The biochemistry of apoptosis,” Nature, 407, 770–775 (2000).

    Article  Google Scholar 

  53. C. E. Hill, L. D. Moon, P. M. Wood, and M. B. Bunge, “Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival,” Glia, 53, 338–343 (2006).

    Article  PubMed  Google Scholar 

  54. P. H. Ho and C. J. Hawkins, “Mammalian initiator apoptotic caspases,” FEBS J., 272, 5436–5453 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. D. M. Hockenberry, “Defining apoptosis,” Rev. Amer. J. Pathol., 146, 16–19 (1995).

    Google Scholar 

  56. M. Horky, V. Kotala, M. Anton, et al., “Nucleolus and apoptosis,” Ann. N.Y. Acad. Sci., 973, 258–264 (2002).

    PubMed  CAS  Google Scholar 

  57. E. J. Ju, D. H. Kwak, D. H. Lee, et al., “Pathophysiological implication of ganglioside GM3 in early mouse embryonic development through apoptosis,” Arch. Pharm. Res., 28, 1057–1064 (2005).

    PubMed  CAS  Google Scholar 

  58. J. N. Keller, M. S. Kindy, F. W. Holtsberg, et al., “Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction,” J. Neurosci., 18, 687–697 (1998).

    PubMed  CAS  Google Scholar 

  59. S. Key, D. DeNoon, and S. Boyles, “Apoptosis is regulating mechanism in CNS,” J. Biol. Chem., 277, 372–380 (2002).

    Google Scholar 

  60. G. Khursigara, J. Bertin, H. Yano, et al., “A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2,” J. Neurosci., 21, 5854–5863 (2001).

    PubMed  CAS  Google Scholar 

  61. Y.-M. Kim, R. V. Talanian, and R. T. Billiar, “Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms,” J. Biol. Chem., 272, 31138–31148 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. C.-Y. Kuan, K. A. Roth, R. A. Flavell, and P. Rakic, “Mechanisms of programmed cell death in the developing brain,” Trends Neurosci., 23, 291–297 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. H. G. Kuhn, M. Biebl, D. Wilhelm, et al., “Increased generation of granule cells in adult Bcl-2-overexpressing mice: a role for cell death during continued hippocampal neurogenesis,” Eur. J. Neurosci., 22, 1907–1915 (2005).

    Article  PubMed  Google Scholar 

  64. K. Kuida, T. Haydar, C. Kuan, et al., “Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9,” Cell, 94, 352–337 (1998).

    Article  Google Scholar 

  65. J. Li, C. A. Bombeck, S. Yang, et al., “Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes,” J. Biol. Chem., 274, 17325 (1999).

    Article  PubMed  CAS  Google Scholar 

  66. C. Q. Li, L. J. Trudel, and G. N. Wogan, “Nitric oxide-induced genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells expressing wild-type and mutant p53,” Proc. Natl. Acad. Sci. USA, 99, 10364–10369 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. A. K. F. Liou, R. S. Clark, D. C. Henshall, et al., “To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways,” Prog. Neurobiol., 69, 103–142 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. S. A. Lipton, “Neuronal protection and destruction by NO,” Cell Death Differ., 6, 943–951 (1999).

    Article  PubMed  CAS  Google Scholar 

  69. L. Lossi and A. Merighi, “In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS,” Prog. Neurobiol., 69, 287–312 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. P. Meier, A. Finch, and G. Evan, “Apoptosis in development,” Nature, 407, 796–801 (2000).

    Article  PubMed  CAS  Google Scholar 

  71. F. D. Miller and D. R. Kaplan, “Neurotrophin signalling pathways regulating neuronal apoptosis,” Cell Mol. Life Sci., 58, 1045–1053 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. U. M. Mol and A. Zaika, “Nuclear and mitochondrial apoptotic pathways of p53,” FEBS Lett., 493, 65–69 (2001).

    Article  Google Scholar 

  73. B. Monti, P. Zanghellini, and A. Contestabile, “Characterization of ceramide-induced apoptotic death in cerebellar granule cells in culture,” Neurochem. Int., 39, 11–18 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. R. W. Oppenheim, “Programmed cell death,” in: Fundamental Neuroscience, Academic, San Diego (1999), pp. 581–609.

    Google Scholar 

  75. R. W. Oppenheim, R. A. Flavell, S. Vinsant, et al., “Programmed cell death of developing mammalian neurons after genetic deletion of caspases,” J. Neurosci., 21, 4752–4760 (2001).

    PubMed  CAS  Google Scholar 

  76. B. Pettmann and C. Henderson, “Neuronal cell death,” Neuron, 20, 633–647 (1998).

    Article  PubMed  CAS  Google Scholar 

  77. A. A. Pieper, S. Blackshaw, E. E. Clements, et al., “Poly(ADP-ribosylation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission,” Proc. Natl. Acad. Sci. USA, 97, 1845–1850 (2000).

    Article  PubMed  CAS  Google Scholar 

  78. M. C. Raff, B. Barres, J. E. Burne, et al., “Programmed cell death and the control of cell survival: lessons from the nervous system,” Science, 262, 695–700 (1993).

    Article  PubMed  CAS  Google Scholar 

  79. P. Rakic, “Neurogenesis in adult primates,” Prog. Brain Res., 138, 3–14 (2002).

    Article  PubMed  CAS  Google Scholar 

  80. S. Rakic and N. Zecevic, “Programmed cell death in the developing human telencephalon,” Eur. J. Neurosci., 12, 2721–2734 (2000).

    Article  PubMed  CAS  Google Scholar 

  81. J. Ricard, J. Salinas, L. Garcia, and D. J. Liebl, “EphrinB3 regulates cell proliferation and survival in adult neurogenesis,” Mol. Cell Neurosci., 31, 713–722 (2006).

    Article  PubMed  CAS  Google Scholar 

  82. T. Rich, L. Allen, and H. Wyllie, “Defying death after DNA damage,” Nature, 407, 777–783 (2000).

    Article  PubMed  CAS  Google Scholar 

  83. L. Rossig, J. Haendeler, C. Hermann, et al., “Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis,” J. Biol. Chem., 275, 25502–25507 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. E. E. Saviani, C. H. Orsi, J. F. Oliveira, et al., “Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death,” FEBS Lett., 510, 136–140 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. V. P. Skulachev, L. E. Bakeeva, B. V. Chernyak, et al., “Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis,” Mol. Cell Biochem., 256–257, 341–358 (2004).

    Article  PubMed  Google Scholar 

  86. A. Terman, and U. T. Brunk, “Lipofuscin: mechanisms of formation and increase with age,” APMIS, 106, 265–276 (1998).

    Article  PubMed  CAS  Google Scholar 

  87. M. Thom, L. Martinian, J. G. Parnavelas, and S. Sisodiya, “Distribution of cortical interneurons in grey matter heterotopia in patients with epilepsy,” Epilepsia, 45, 916–923 (2004).

    Article  PubMed  Google Scholar 

  88. M. Ueda, R. Fujita, T. Koji, et al., “The cognition-enhancer nefiracetam inhibits both necrosis and apoptosis in retinal ischemic models in vitro and vivo,” J. Pharmacol. Exptl. Ther., 123, 1124–1127 (2004).

    Google Scholar 

  89. A. Ushmorov, F. Ratter, V. Lehmann, et al., “Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release,” Blood, 93, 2342–2352 (1999).

    PubMed  CAS  Google Scholar 

  90. M. F. van Delft and D. C. Huang, “How the Bcl-2 family of proteins interact to regulate apoptosis,” Cell Res., 16, 203–213 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. X. Wang, J. H. Bauer, Y. Li, et al., “Characterization of a p75NTR apoptotic pathway using a novel cellular model,” J. Biol. Chem., 276, 33812–33820 (2001).

    Article  PubMed  CAS  Google Scholar 

  92. N. Yan and Y. Shi, “Mechanisms of apoptosis through structural biology,” Ann. Rev. Cell. Devl. Biol., 21, 35–56 (2005).

    Article  CAS  Google Scholar 

  93. E. S. Yang and J. W. Park, “Regulation of nitric oxide-induced apoptosis by sensitive to apoptosis gene protein,” Free Radic. Res., 40, 279–284 (2006).

    Article  PubMed  CAS  Google Scholar 

  94. Y. Yoshioka, A. Yamamuro, and S. Maeda, “Nitric oxide at a low concentration protects murine macrophage RAW264 cells against nitric oxide-induced death via cGMP signaling pathway,” Brit. J. Pharmacol., 139, 28–34 (2003).

    Article  CAS  Google Scholar 

  95. J. Zhang, V. L. Dawson, T. M. Dawson, and S. H. Snyder, “Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity,” Science, 263, 687–689 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Morfologiya, Vol. 131, No. 2, pp. 16–28, March–April, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinichenko, S.G., Matveeva, N.Y. Morphological characteristics of apoptosis and its significance in neurogenesis. Neurosci Behav Physi 38, 333–344 (2008). https://doi.org/10.1007/s11055-008-0046-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-0046-7

Key words

Navigation