Skip to main content
Log in

Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The relationship between convulsive activity evoked by repeated electric shocks and structural changes in the hippocampus of Balb/C mice was studied. Brains were fixed two and seven days after the completion of electric shocks, and sections were stained by the Nissl method and immunohistochemically for apoptotic nuclei (the TUNEL method). In addition, the activity of caspase-3, the key enzyme of apoptosis, was measured in brain areas immediately after completion of electric shocks. The number of neurons decreased significantly in field CA1 and the dentate fascia, but not in hippocampal field CA3. The numbers of cells in CA1 and CA3 were inversely correlated with the intensity of convulsions. Signs of apoptotic neuron death were not seen, while caspase-3 activity was significantly decreased in the hippocampus after electric shocks. These data support the notion that functional changes affect neurons after electric shock and deepen our understanding of this view, providing direct evidence that there are moderate (up to 10%) but significant levels of neuron death in defined areas of the hippocampus. Inverse correlations of the numbers of cells with the extent of convulsive activity suggest that the main cause of neuron death is convulsions evoked by electric shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. V. Pavlova, A. A. Yakovlev, M. Yu. Stepanichev, A. M. Mendzheritskii, and N. V. Gulyaeva, “Pentylenetetrazolium kindling induces activation of caspase-3 in the rat brain,” Zh. Vyssh. Nerv. Deyat., 53, No.1, 110–112 (2003).

    Google Scholar 

  2. M. Yu. Stepanichev, I. M. Zdobnova, I. I. Zarubenko, M. V. Onufriev, Yu. V. Moiseeva, L. I. Chernyavskaya, and N. V. Gulyaeva, “The intensity of convulsive activity correlates with oxidative stress and apoptosis in the rat hippocampus using the kainate model,” Neirokhimiya, 17, No.3, 189–191 (2000).

    Google Scholar 

  3. A. A. Yakovlev, M. V. Onufriev, M. Yu. Stepanichev, K. Braun, and N. V. Gulyaeva, “Caspase-3 activity in brain areas of various rodent species,” Neirokhimiya, 18, No.1, 41–43 (2001).

    Google Scholar 

  4. A. A. Yakovlev, T. P. Semenova, S. G. Kolaeva, M. V. Onufriev, S. L. Mikhalev, and N. V. Gulyaeva, “Changes in caspase-3 activity in brain areas of the ground squirrel Citellus undulates during the hibernation cycle,” Neirokhimiya, 19, No.1, 33–36 (2002).

    Google Scholar 

  5. R. Abrams, Electroconvulsive Therapy, Oxford University Press, New York (1992).

    Google Scholar 

  6. M. W. Agelink, J. Andrich, T. Postert, U. Wurzinger, T. Zeit, P. Klotz, and H. Przuntek, “Relation between electroconvulsive therapy, cognitive side effects, neuron specific enolase, and protein S-100,” J. Neurol. Neurosurg. Psychiat., 71, 394–396 (2001).

    Article  PubMed  Google Scholar 

  7. Y. Ben-Ari, “Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy,” Neurosci., 14, 375–403 (1985).

    Article  Google Scholar 

  8. J. Bengzon, Z. Kokaia, E. Elmer, A. Nanobashvili, M. Kokaia, and O. Lindvall, “Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures,” Proc. Natl. Acad. Sci. USA, 94, 10432–10437 (1997).

    Article  PubMed  Google Scholar 

  9. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein binding,” Anal. Biochem., 72, 248–254 (1976).

    PubMed  Google Scholar 

  10. W. M. Burnham, G. A. Cottrell, D. Diosy, and R. J. Racine, “Long-term changes in entorhinal-dentate evoked potentials induced by electroconvulsive shock seizures in rats,” Brain Res., 698, 180–184 (1995).

    Article  PubMed  Google Scholar 

  11. J. E. Cavazos, I. Das, and T. P. Sutula, “Neuronal loss induced in limbic pathways by kindling. Evidence for induction of hippocampal sclerosis by repeated brief seizures,” J. Neurosci., 14, 3106–3121 (1994).

    PubMed  Google Scholar 

  12. J. S. Duncan, “MRI studies. Do seizures damage the brain?” Progr. Brain Res., 135, 253–261 (2002).

    Google Scholar 

  13. P. S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, A. M. Alborn, C. Nordberg, D. A. Peterson, and F. H. Gage, “Neurogenesis in the adult human hippocampus,” Nature. Med., 4, 1313–1317 (1998).

    Article  PubMed  Google Scholar 

  14. B. Fadel, S. Orrenius, and B. Zhivotovksy, “The most unkindest cut of all: on the multiple roles of mammalian caspases,” Leukemia, 14, 1514–1525 (2000).

    Article  PubMed  Google Scholar 

  15. M. Fink, “How does electroconvulsive therapy work?” Neuropharmacol., 3, 73–82 (1990).

    Google Scholar 

  16. R. M. Giles, “Electroconvulsive therapy: time to bring it out of the shadows,” J. Amer. Med. Assoc., 285, 1346–1348 (2001).

    Article  Google Scholar 

  17. Z. Gombos, A. Mendonca, R. J. Racine, G. A. Cottrell, and W. M. Burnham, “Long-term enhancement of entorhinal-dentate evoked potentials following ‘modified’ ECS in the rat,” Brain Res., 766, 168–172 (1997).

    Article  PubMed  Google Scholar 

  18. Z. Gombos, A. Spiller, G. A. Cottrell, R. J. Racine, and W. M. Burnham, “Mossy fiber sprouting induced by repeated electroconvulsive shock seizures,” Brain Res., 844, 28–33 (1999).

    Article  PubMed  Google Scholar 

  19. E. Gould and P. Tanapat, “Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of adult rat,” Neurosci., 80, 427–436 (1997).

    Article  Google Scholar 

  20. N. V. Gulyaeva, I. E. Kudryashov, and I. V. Kudryashova, “Caspase activity is essential for long-term potentiation,” J. Neurosci. Res., 73, 853–864 (2003).

    Article  PubMed  Google Scholar 

  21. N. Hiroi, G. J. Marek, J. R. Brown, H. Ye, F. Saudou, V. A. Vaidya, R. S. Duman, M. E. Greenberg, and E. J. Nestler, “Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures,” J. Neurosci., 18, 6952–6962 (1998).

    PubMed  Google Scholar 

  22. G. L. Holmes, “Seizure-induced neuronal injury: animal data,” Neurology, 59,Suppl. 5, S3–S6 (2002).

    Google Scholar 

  23. G. I. Holmes and Y. Ben-Ari, “The neurobiology and consequences of epilepsy in the developing brain,” Pediatric Res., 49, 320–325 (2001).

    Google Scholar 

  24. R. Kalviainen and T. Salmenpera, “Do recurrent seizures cause neuronal damage? A series of studies with MRI volumetry in adults with partial epilepsy,” Progr. Brain Res., 135, 279–295 (2002).

    Google Scholar 

  25. A. Kondratyev, N. Sahibzada, and K. Gale, “Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus,” Brain Res. Mol. Brain Res., 91, 1–13 (2001).

    Article  PubMed  Google Scholar 

  26. I. E. Kudryashov, M. V. Onufriev, I. V. Kudryashova, and N. V. Gulyaeva, “Periods of postnatal maturation of hippocampal: synaptic modifications and neuronal disconnection,” Dev. Brain Res., 132, 113–120 (2001).

    Article  Google Scholar 

  27. I. Kudryashov, A. Yakovlev, I. Kudryashova, and N. Gulyaeva, “Footshock stress alters early postnatal development of electrophysiological responses and caspase-3 activity in rat hippocampus,” Neurosci. Lett., 332, 95–98 (2002).

    Article  PubMed  Google Scholar 

  28. M. Los, C. Stroh, R. U. Janicke, I. H. Engels, and K. Schulze-Osthoff, “Caspases: more than just killers?” Trends Immunol., 22, 31–34 (2001).

    Article  PubMed  Google Scholar 

  29. T. M. Madsen, A. Treschow, J. Bengzon, T. G. Bolwig, O. Lindvall, and A. Tingstrom, “Increased neurogenesis in a model of electroconvulsive therapy,” Biol. Psychiatr., 47, 1043–1049 (2000).

    Article  Google Scholar 

  30. D Masco, N. Sahibzada, R. Switzer, and K. Gale, “Electroshock seizures protect against apoptotic hippocampal cell death induced by adrenalectomy,” Neurosci., 91, 1315–1319 (1999).

    Article  Google Scholar 

  31. G. W. Mathern, P. D. Adelson, L. D. Cahan, and J. P. Leite, “Hippocampal neuron damage in human epilepsy: Meyel’s hypothesis revisited,” Progr. Brain Res., 135, 237–251 (2002).

    Google Scholar 

  32. M. P. Mattson and W. Duan, “’Apoptotic’ biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders,” J. Neurosci. Res., 58, 152–166 (1999).

    Article  PubMed  Google Scholar 

  33. M. P. Mattson, J. N. Keller, and J. G. Begley, “Evidence for synaptic apoptosis,” Exptl. Neurol., 153, 35–48 (1998).

    Article  Google Scholar 

  34. B. S. Meldrum, “Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives,” Progr. Brain Res., 135, 3–11 (2002).

    Google Scholar 

  35. B. S. Meldrum, “Neuropathological consequences of chemically and electrically induced seizures,” Ann. N.Y. Acad. Sci., 462, 186–193 (1986).

    PubMed  Google Scholar 

  36. J. V. Nadler, B. W. Perry, and C. W. Cotman, “Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells,” Nature, 271, 676–677 (1978).

    PubMed  Google Scholar 

  37. J. N. Nobrega, R. Raymond, L. DiStefano, and W. M. Burnham, “Long-term changes in regional brain cytochrome oxidase activity induced by electroconvulsive treatment in rats,” Brain Res., 605, 1–8 (1993).

    PubMed  Google Scholar 

  38. W. Pohle, A. Becker, G. Grecksch, A. Juhre, and A. Willenberg, “Piracetam prevents pentylenetetrazol kindling-induced neuronal loss and learning deficits,” Seizure, 6, 467–474 (1997).

    PubMed  Google Scholar 

  39. H. Pollard, C. Charriaut-Marlangue, S. Cantagrel, A. Represea, O. Robain, J. Moreau, and Y. Ben-Ari, “Kainate-induced apoptotic cell death in hippocampal neurons,” Neurosci., 63, 7–18 (1994).

    Google Scholar 

  40. B. W. Scott, J. M. Wojtowicz, and W. M. Burnham, “Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures,” Exptl. Neurol., 165, 231–236 (2000).

    Google Scholar 

  41. B. W. Scott, S. W. Wang, W. M. Burnham, U. De Boni, and J. M. Wojtowicz, “Kindling-induced neurogenesis in dentate gyrus of the rat,” Neurosci. Lett., 248, 73–76 (1998).

    PubMed  Google Scholar 

  42. R. S. Sloviter, “Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy,” Science, 235, 73–76 (1987).

    PubMed  Google Scholar 

  43. S. Sperandio, I. De Belle, S. Castro-Obregon, G. del Rio, and D. E. Bredesen, “Cell death programs in neural development and disease,” in: Cerebrovascular Disease, 22nd Princeton Conference, P. H. Chan (ed.), Cambridge University Press, Cambridge (2002).

    Google Scholar 

  44. C. Stewart, K. Jeffery, and I. Reid, “LTP-like synaptic changes following electroconvulsive stimulation,” Neuroreport, 5, 1041–1044 (1994).

    PubMed  Google Scholar 

  45. W. H. Theodore and W. D. Gaillard, “Neuroimaging and the progression of epilepsy,” Progr. Brain Res., 135, 305–313 (2002).

    Google Scholar 

  46. V. A. Vaidya, J. A. Siuciak, F. Du, and R. S. Suman, “Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures,” Neurosci., 89, 157–166 (1999).

    Google Scholar 

  47. R. D. Weiner, “Does electroconvulsive therapy cause brain damage?” Behav. Brain Sci., 7, 1–53 (1984).

    Google Scholar 

  48. H. S. White, “Animal models of epileptogenesis,” Neurology, 59,Suppl. 5, S7–S14 (2002).

    Google Scholar 

  49. L. X. Zhang, M. A. Smith, X. L. Li, S. R. Weiss, and R. M. Post, “Apoptosis of hippocampal neurons after amygdala kindled seizures,” Brain Res. Mol. Brain Res., 55, 198–208 (1998).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 90, No. 3, pp. 272–281, March, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarubenko, I.I., Yakovlev, A.A., Stepanichev, M.Y. et al. Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity. Neurosci Behav Physiol 35, 715–721 (2005). https://doi.org/10.1007/s11055-005-0115-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-005-0115-0

Key Words

Navigation