Skip to main content

Advertisement

Log in

Prediction of Blast-Induced Rock Movement During Bench Blasting: Use of Gray Wolf Optimizer and Support Vector Regression

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A large ore loss and dilution can be expected when using a pre-blast ore boundary for shovel guidance because of the movement and re-distribution of ore in the muck pile under the action of explosive energy. Considering the difficulties in collecting measurements at the post-blast ore boundary, the distribution law and prediction of blast-induced rock movement were studied in this paper. With the application of a blast movement monitoring system, which can obtain the most accurate data to determine the ore boundary after the blast, four blast movement trials were carried out to collect data. Then, statistical analysis, an artificial neural network (ANN) model, a random forest (RF) model and a gray wolf optimizer algorithm–support vector regression (GWO-SVR) model were used to analyze the database. The results of the statistical analysis show that the horizontal, vertical and 3D movements first increase and then decrease, with the maximum displacement occurring near the top of the charging section. Furthermore, the horizontal movement exhibited a good linear relationship with the 3D movement, indicating that the horizontal movement can be considered instead of the 3D movement to facilitate shovel guidance for reducing ore loss and dilution. The results also indicate that the GWO-SVR model is more accurate than the ANN and RF models and that the blast-induced rock movement can be controlled by increasing the burden × spacing and reducing the power factor variables during the mining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

(modified from Photophoto)

Figure 5

(modified from Mirjalili et al. (2014) and Photophoto)

Figure 6

(modified from Mirjalili et al. (2014) and Photophoto)

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  • Armaghani, D. J., Hasanipanah, M., Mahdiyar, A., Majid, M. Z. A., Amnieh, H. B., & Tahir, M. M. (2018). Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications,29(9), 619–629.

    Article  Google Scholar 

  • Armaghani, D. J., Mohamad, E. T., Momeni, E., & Narayanasamy, M. S. (2015). An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: A study on Main Range granite. Bulletin of Engineering Geology and the Environment,74(4), 1301–1319.

    Article  Google Scholar 

  • Bakhtyar, S., & Henesey, L. (2014). Freight transport prediction using electronic waybills and machine learning. In International conference on informative and cybernetics for computational social systems, 2014 (pp. 128–133).

  • Bian, X. Q., Zhang, L., Du, Z. M., Chen, J., & Zhang, J. Y. (2018). Prediction of sulfur solubility in supercritical sour gases using grey wolf optimizer-based support vector machine. Journal of Molecular Liquids,261, 431–438.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning,45(1), 5–32.

    Article  Google Scholar 

  • Bui, X. N., Nguyen, H., Le, H. A., Bui, H. B., & Do, N. H. (2019). Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques. Natural Resources Research, 1–21. https://doi.org/10.1007/s11053-019-09461-0.

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),2(3), 27.

    Google Scholar 

  • Collobert, R., & Bengio, S. (2001). SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research,1(2), 143–160.

    Google Scholar 

  • Cundall, P. A. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In The international symposium on rock mechanics.

  • Danter, W. R. (2019). DeepNEU: Cellular reprogramming comes of age–a machine learning platform with application to rare diseases research. Orphanet Journal of Rare Diseases,14(1), 13.

    Article  Google Scholar 

  • Dehghani, H., & Shafaghi, M. (2017). Prediction of blast-induced flyrock using differential evolution algorithm. Engineering with Computers,33(1), 149–158.

    Article  Google Scholar 

  • Dong, L. J., Li, X. B., Xu, M., & Li, Q. Y. (2011). Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters. Procedia Engineering,26, 1772–1781.

    Article  Google Scholar 

  • Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Paper presented at the advances in neural information processing systems.

  • Ebrahimi, E., Monjezi, M., Khalesi, M. R., & Armaghani, D. J. (2016). Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment,75(1), 27–36.

    Article  Google Scholar 

  • Engmann, E., Ako, S., Bisiaux, B., Rogers, W., & Kanchibotla, S. (2013). Measurement and modelling of blast movement to reduce ore losses and dilution at Ahafo Gold Mine in Ghana. Ghana Mining Journal,14, 27–36.

    Google Scholar 

  • Eshun, P. A., & Dzigbordi, K. A. (2016). Control of ore loss and dilution at Anglogold Ashanti, Iduapriem mine using blast movement monitoring system. Ghana Mining Journal,16, 49–59. https://doi.org/10.4314/gmj.v16i1.6.

    Article  Google Scholar 

  • Faruto, & Li, Y. (2009). LIBSVM-faruto ultimate version: A toolbox with implements for support vector machines based on LIBSVM. Software available from https://www.ilovematlab.cn.

  • Gilbride, L. J. (1995). Blast-induced rock movement modelling for bench blasting in Nevada open-pit mines. Reno: University of Nevada.

    Google Scholar 

  • Gopalakrishnan, K., & Kim, S. (2011). Support vector machines approach to HMA stiffness prediction. Journal of Engineering Mechanics,137(2), 138–146.

    Article  Google Scholar 

  • Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS Technical Report, 14(1), 5–16.

    Google Scholar 

  • Harris, G. W. (1997). Measurement of blast induced rock movement in surface mines using magnetic geophysics. Reno: University of Nevada.

    Google Scholar 

  • Harris, G. W., Mousset-Jones, P., & Daemen, J. (1999). Measurement of blast-induced rock movement in surface mines by application of magnetic geophysics. Mining Technology IMM Transactions,108, A172–A180.

    Google Scholar 

  • Harris, G. W., Mousset-Jones, P., & Daemen, J. (2001). Blast movement measurement to control dilution in surface mines. CIM Bulletin,94(1047), 52–55.

    Google Scholar 

  • Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2016a). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications,30(4), 1015–1024.

    Article  Google Scholar 

  • Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement,75, 289–297.

    Article  Google Scholar 

  • Hasanipanah, M., Noorian-Bidgoli, M., Armaghani, D. J., & Khamesi, H. (2016b). Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers,32(4), 705–715.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Arab, H., Golzar, S. B., & Amiri, M. (2017a). Developing a new hybrid-AI model to predict blast-induced backbreak. Engineering with Computers,33(3), 349–359.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Bakhshandeh Amnieh, H., & Jahed Armaghani, D. (2017b). Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Engineering with Computers,33(1), 23–31.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the international conference on neural networks, 1987 (Vol. 3, pp. 11-14): IEEE Press New York.

  • Khandelwal, M., Armaghani, D. J., Faradonbeh, R. S., Yellishetty, M., Majid, M. Z. A., & Monjezi, M. (2017). Classification and regression tree technique in estimating peak particle velocity caused by blasting. Engineering with Computers,33(1), 45–53.

    Article  Google Scholar 

  • Koopialipoor, M., Armaghani, D. J., Haghighi, M., & Ghaleini, E. N. (2019a). A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bulletin of Engineering Geology and the Environment,78, 981–990.

    Article  Google Scholar 

  • Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A., & Mohamad, E. T. (2019b). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers,35(1), 243–256.

    Article  Google Scholar 

  • Li, N., Wang, L. G., & Jia, M. T. (2017). Rockburst prediction based on rough set theory and support vector machine. Journal of Central South University,48(5), 1268–1275.

    Google Scholar 

  • Li, J., Yue, J. H., Yang, Y., Zhan, X. Z., & Zhao, L. (2017). Multi-resolution feature fusion model for coal rock burst hazard recognition based on acoustic emission data. Measurement,100, 329–336.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News,2(3), 18–22.

    Google Scholar 

  • Lucas, R., & Nies, D. (1990). Improving Fragmentation and Ore Displacement Control. In: Proceedings of the sixteenth conference on explosives and blasting technique, 1990 (pp. 409–422).

  • Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. The Scientific World Journal, 2014, 643715. https://doi.org/10.1155/2014/643715.

    Article  Google Scholar 

  • Menden, M. P., Iorio, F., Garnett, M., Mcdermott, U., Benes, C. H., Ballester, P. J., et al. (2013). Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE,8(4), e61318.

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software,69(3), 46–61.

    Article  Google Scholar 

  • Mohamad, E. T., Armaghani, D. J., Momeni, E., & Abad, S. V. A. N. K. (2015). Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bulletin of Engineering Geology and the Environment,74(3), 745–757.

    Article  Google Scholar 

  • Morota, G., Ventura, R. V., Silva, F. F., Koyama, M., & Fernando, S. C. (2018). Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science, 96(4), 1450–1550. https://doi.org/10.1093/jas/sky014.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research. https://doi.org/10.1007/s11053-018-9424-1.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., Le, T.-Q., & Do, N.-H. (2019a). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam. SN Applied Sciences,1(1), 125.

    Article  Google Scholar 

  • Nguyen, H., Drebenstedt, C., Bui, X.-N., & Bui, D. T. (2019b). Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09470-z.

    Article  Google Scholar 

  • Photophoto. http://www.photophoto.cn. Retrieved March 26, 2019.

  • Preece, D., & Silling, S. A. (2016). Ore loss and dilution studies of surface mineral blasting with 3D distinct element heave models. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

  • Preece, D., & Taylor, L. (1989). Complete computer simulation of crater blasting including fragmentation and rock motion. Albuquerque, NM (USA): Sandia National Labs.

    Google Scholar 

  • Rad, H. N., Hasanipanah, M., Rezaei, M., & Eghlim, A. L. (2018). Developing a least squares support vector machine for estimating the blast-induced flyrock. Engineering with Computers,34(4), 709–717.

    Article  Google Scholar 

  • Rong, J. F., Lin, Y. Z., & Wang, Z. L. (2016). Geologic features of the Husab uranium deposit. Namibia. Acta Geologica Sichuan, 36(1), 101–106. https://doi.org/10.3969/j.issn.1006-0995.2016.01.022.

    Article  Google Scholar 

  • Rovini, E., Maremmani, C., Moschetti, A., Esposito, D., & Cavallo, F. (2018). Comparative motor pre-clinical assessment in Parkinson’s disease using supervised machine learning approaches. Annals of Biomedical Engineering,46(12), 2057–2068.

    Article  Google Scholar 

  • Samui, P., Sitharam, T. G., & Kurup, P. U. (2008). OCR prediction using support vector machine based on piezocone data. Journal of Geotechnical & Geoenvironmental Engineering,134(6), 894–898.

    Article  Google Scholar 

  • Schalkoff, R. J. (1997). Artificial neural networks (Vol. 1). New York: McGraw-Hill.

    Google Scholar 

  • Shi, X. Z., Zhou, J., Wu, B. B., Huang, D., & Wei, W. (2012). Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Transactions of Nonferrous Metals Society of China,22(2), 432–441.

    Article  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing,14(3), 199–222.

    Article  Google Scholar 

  • Song, Q. J., Jiang, H. Y., Song, Q. H., Zhao, X. G., & Wu, X. X. (2017). Combination of minimum enclosing balls classifier with SVM in coal-rock recognition. PLoS ONE,12(9), e0184834.

    Article  Google Scholar 

  • Sujay, R. N., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing Journal,19(6), 372–386.

    Google Scholar 

  • Taylor, S. L. (1995). Blast induced movement and its effect on grade dilution at the Coeur Rochester Mine. Reno: University of Nevada.

    Google Scholar 

  • Taylor, D. L., & Firth, I. (2003). Utilization of blast movement measurements in grade control. In: F. A. Camisani-Calzolari (Ed.), APCOM 2003. Proceedings of the 31st international symposium on application of computers and operations research in the minerals industries, May 14–16, Cape Town, South Africa (pp. 244–247). Johannesburg: The South African Institute of Mining and Metallurgy.

  • Thornton, D. (2009). The implications of blast-induced movement to grade control. In: Seventh international mining geology conference (pp. 147–154).

  • Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer.

    Book  Google Scholar 

  • Wang, S. (2004). Practical book for new technologies for geotechnical engineering. Jilin: Yinsheng Audiovisual Press.

    Google Scholar 

  • Yang, R. L., & Kavetsky, A. (1990). A three dimensional model of muckpile formation and grade boundary movement in open pit blasting. International Journal of Mining and Geological Engineering,8, 13–34.

    Article  Google Scholar 

  • Yang, R. L., Kavetsky, A., & Mckenzie, C. K. (1989). A two-dimensional kinematic model for predicting muckpile shape in bench blasting. International Journal of Mining and Geological Engineering,7, 209–226.

    Article  Google Scholar 

  • Yennamani, A. L. (2010). Blast induced rock movement measurement for grade control at the Phoenix mine. Reno: University of Nevada.

    Google Scholar 

  • Zhang, S. L. (1994). Rock movement due to blasting and its impact on ore grade control in Nevada open pit gold mines. Reno: University of Nevada.

    Google Scholar 

  • Zhang, H. F., & Lu, J. J. (2018). Geological characteristics, ore-controlling factors and genesis analysis of Husab uranium deposit in Namibia. Global Geology,37(1), 105–123.

    Google Scholar 

  • Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M., & Koopialipoor, M. (2019a). A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering with Computers,. https://doi.org/10.1007/s00366-019-00726-z.

    Article  Google Scholar 

  • Zhou, J., Li, X. B., & Shi, X. Z. (2012). Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Science,50(4), 629–644.

    Article  Google Scholar 

  • Zhou, J., Li, X. B., Shi, X. Z., Wei, W., & Wu, B. B. (2011). Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods. Transactions of Nonferrous Metals Society of China,21(12), 2734–2743.

    Article  Google Scholar 

  • Zhou, J., Li, X. B., Wang, S. M., & Wei, W. (2013). Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine. International Journal of Mining Science and Technology,23(5), 701–707.

    Article  Google Scholar 

  • Zhou, J., Nekouie, A., Arslan, C. A., Pham, B. T., & Hasanipanah, M. (2019b). Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm. Engineering with Computers, 1–10.

  • Zhou, C., Yin, K. L., Cao, Y., Ahmed, B., Li, Y. Y., Catani, F., et al. (2018). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers & Geosciences,112, 23–37.

    Article  Google Scholar 

  • Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H., & Acikalin, S. (2008). Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology,96(3–4), 141–158.

    Article  Google Scholar 

  • Zou, Z. X., Tang, H. M., Xiong, C. R., Su, A. J., & Criss, R. E. (2017). Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology,295, 1–15.

    Article  Google Scholar 

  • Zuo, R. (2017). Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Natural Resources Research,26(4), 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

The most sincere gratitude is extended for the financial support from the National Natural Science Foundation Project of China (Grant No. 51874350; Grant No. 41807259), the National Key R&D Program of China (2017YFC0602902), and the Fundamental Research Funds for the Central Universities of Central South University (2018zzts217). Special thanks to Blast Movement Technologies for the high-precision monitoring of the blast-induced rock movement effect. Additionally, the authors fully acknowledge the Uranium Resource Company Limited and the Swakop Uranium Proprietary Limited for permitting us to use the blast-induced rock movement data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuzhi Shi or Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Shi, X., Zhou, J. et al. Prediction of Blast-Induced Rock Movement During Bench Blasting: Use of Gray Wolf Optimizer and Support Vector Regression. Nat Resour Res 29, 843–865 (2020). https://doi.org/10.1007/s11053-019-09593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09593-3

Keywords

Navigation