Skip to main content

Advertisement

Log in

Calibration of Genetic Algorithm Parameters for Mining-Related Optimization Problems

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on the selection of the GA parameter values (crossover and mutation rates and population size). We propose an approach based on full factorial and response surface methodology experimental designs to calibrate GA parameters such that the objective function is maximized/minimized and the relative importance of the parameters is quantified. The approach was tested by applying it to stope optimization of underground mines, where profit can vary ± 7% based solely on GA parameters. Results showed that: (1) a larger population size did not always increase solution time; (2) solution time was positively related to crossover and mutation rates; and (3) simultaneous analysis of solution time and profit illustrated the trade-off between acceptable computing time and profit desirability through GA parameter selection. This approach can be used to calibrate parameters of other metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019.

    Article  Google Scholar 

  • Box, G. E., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society (Series B), 13, 1–45.

    Google Scholar 

  • Clifton Young, J. (1996). Blocking, replication, and randomization—The key to effective experimentation: A case study. Quality Engineering, 9(2), 269–277.

    Article  Google Scholar 

  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.

    Article  Google Scholar 

  • Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and user’s guide. New York: Oxford University Press.

    Google Scholar 

  • Eiben, Á. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124–141. https://doi.org/10.1109/4235.771166.

    Article  Google Scholar 

  • Ferreira, S. L., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., et al. (2007). Box–Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. https://doi.org/10.1016/j.aca.2007.07.011.

    Article  Google Scholar 

  • Goodfellow, R. C., & Dimitrakopoulos, R. (2016). Global optimization of open pit mining complexes with uncertainty. Applied Soft Computing, 40, 292–304.

    Article  Google Scholar 

  • Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems Man and Cybernetics, 16(1), 122–128. https://doi.org/10.1109/Tsmc.1986.289288.

    Article  Google Scholar 

  • Helland, I. S. (2000). Model reduction for prediction in regression models. Scandinavian Journal of Statistics, 27(1), 1–20.

    Article  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Kumral, M. (2004). Optimal location of a mine facility by genetic algorithms. IMM Transactions, Mining Technology, 113(2), A83–A88. https://doi.org/10.1179/037178404225004940.

    Article  Google Scholar 

  • Kumral, M., & Dowd, P. (2005). A simulated annealing approach to mine production scheduling. Journal of the Operational Research Society, 56(8), 922–930.

    Article  Google Scholar 

  • Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty. European Journal of Operational Research, 222(3), 642–652.

    Article  Google Scholar 

  • Leite, A., & Dimitrakopoulos, R. (2007). Stochastic optimisation model for open pit mine planning: Application and risk analysis at copper deposit. Mining Technology, 116(3), 109–118.

    Article  Google Scholar 

  • Manchuk, J., & Deutsch, C. V. (2008). Optimizing stope designs and sequences in underground mines. SME Transactions, 324, 67–75.

    Google Scholar 

  • Melvin, T. (2000). Response surface optimization using JMP Software. Baltimore: Qualistics.

    Google Scholar 

  • Mitchell, M. (1999). An introduction to genetic algorithms. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Montgomery, D. C. (1997). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  • Nannen, V., & Eiben, A. E. (2007). Relevance estimation and value calibration of evolutionary algorithm parameters. Paper presented at the 20th international joint conference on artificial intelligence, Hyderabad, India,

  • Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. New York: Springer.

    Google Scholar 

  • Pandey, H. M., Chaudhary, A., & Mehrotra, D. (2014). A comparative review of approaches to prevent premature convergence in GA. Applied Soft Computing, 24, 1047–1077. https://doi.org/10.1016/j.asoc.2014.08.025.

    Article  Google Scholar 

  • Rayward-Smith, V. J. (1996). Modern heuristic techniques. In V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods (pp. 1–25). New York: Wiley.

    Google Scholar 

  • Reeves, C. (2003). Genetic algorithms. Handbook of metaheuristics (pp. 55–82). New York: Kluwer Academic.

    Chapter  Google Scholar 

  • Ruiseco, J. R., & Kumral, M. (2017). A practical approach to mine equipment sizing in relation to dig-limit optimization in complex orebodies: Multi-rock type, multi-process, and multi-metal case. Natural Resources Research, 26(1), 23–35.

    Article  Google Scholar 

  • Ruiseco, J. R., Williams, J., & Kumral, M. (2016). Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms. Natural Resources Research, 25(4), 473–485.

    Article  Google Scholar 

  • Sauvageau, M., & Kumral, M. (2016). Genetic algorithms for the optimisation of the Schwartz-Smith two-factor model: A case study on a copper deposit. International Journal of Mining, Reclamation and Environment, 32, 1–19.

    Google Scholar 

  • Shi, B., Bloom, L., & Mueller, U. (2000). Applications of conditional simulation to a positively skewed platinum mineralization. Natural Resources Research, 9(1), 53–64.

    Article  Google Scholar 

  • Shishvan, M. S., & Sattarvand, J. (2015). Long term production planning of open pit mines by ant colony optimization. European Journal of Operational Research, 240(3), 825–836.

    Article  Google Scholar 

  • Snyman, J. (2005). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms (Vol. 97). New York: Springer.

    Google Scholar 

  • Telford, J. K. (2007). A brief introduction to design of experiments. Johns Hopkins APL Technical Digest, 27(3), 224–232.

    Google Scholar 

  • Verhoeff, R. L. A. (2017). Using genetic algorithms for underground stope design optimization in mining. A stochastic analysis. M.Sc. thesis, Delft University of Technology.

  • Villalba, M. E., & Kumral, M. (2017). Heuristic stope layout optimization accounting for variable stope dimensions and dilution management. International Journal of Mining and Mineral Engineering, 8(1), 1–18. https://doi.org/10.1504/IJMME.2017.082680.

    Article  Google Scholar 

  • Villalba, M. E., & Kumral, M. (2018a). Underground mine planning: Stope layout optimization under uncertainty using genetic algorithms. International Journal of Mining, Reclamation and Environment (in press). https://doi.org/10.1080/17480930.2018.1486692.

  • Villalba, M. E., & Kumral, M. (2018b). A value adding approach to hard-rock underground mining operations: Balancing orebody orientation and mining direction (under submission).

Download references

Acknowledgments

This research was conducted with financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC Fund # 242984), and we thank NSERC for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kumral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalba Matamoros, M.E., Kumral, M. Calibration of Genetic Algorithm Parameters for Mining-Related Optimization Problems. Nat Resour Res 28, 443–456 (2019). https://doi.org/10.1007/s11053-018-9395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9395-2

Keywords

Navigation