Skip to main content
Log in

A Methodology for Sensitivity Analysis Based on Regression: Applications to Handle Uncertainty in Natural Resources Characterization

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Uncertainty in a natural resource model represents risk that should be minimized for improved management. Natural resources are components of complex earth science systems, which can be exhaustively sampled, numerically modeled with Monte Carlo simulation, or both, to understand their underlying nature. A numerical model represents relationships between a response variable and predictor variables. Uncertainty in a response variable can be observed directly, but understanding the importance of each predictor variable requires further post-processing of the numerical model. A methodology of local sensitivity analysis, based on linear and quadratic regression models, is developed to help understand the uncertainty contribution of each predictor variable to the response model. Sensitivity coefficients, predicted response values, and summary statistics with model utility tests for the regression models are evaluated. The importance of standardized sensitivity coefficients and other measures are developed. Standardized sensitivity coefficients represent the contribution of uncertainty in the predictor variables to uncertainty in model response. Results of the sensitivity analysis are visually summarized in the form of extended tornado charts. The proposed methodology is applied to representative petroleum and mining case studies. The methodology is robust, efficient, descriptive, and straightforward. Understanding of the contribution of each predictor variable to the response variable is useful for minimization of model response uncertainty, decision-making, and further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Fig 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31

Similar content being viewed by others

References

  • Bishop, K. A., Brett, V. S., Green, D. W., & McElhiney, J. E. (1976). The application of sensitivity analysis to reservoir simulation. In SPE Annual Fall Technical Conference and Exhibition, New Orleans.

  • Cacuci, D. G. (2003). Sensitivity and uncertainty analysis—theory. New York: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Cacuci, D. G., Ionescu-Bujor, M., & Navon, I. M. (2005). Sensitivty and uncertainty analysis—applications to large-scale systems. New York: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Chan, K., Saltelli, A., & Tarantola, S. (1997). Sensitivity analysis of model output: Variance-based methods make the difference. In Association for Computing Machinery Conference, Atlanta, pp. 261–268.

  • Chen, H. C., & Fang, J. H. (1986). Sensitivity analysis of the parameters in Archie’s water saturation equation. The Log Analyst, 27(5), 39–44.

    Google Scholar 

  • Dai, C., Li, H., & Zhang, D. (2013). Efficient and accurate global sensitivity analysis for reservoir simulations by use of the probabilistic collocation method. SPE Journal, 1–15.

  • Demiryurek, U., Banaei-Kashani, F., Shahabi, C., & Wilkinson, F. (2008). Neural-network based sensitivity analysis for injector-producer relationship identification. In Intelligent Energy Conference and Exhibition, Amsterdam

  • Deutsch, C. V., Monteiro, M., Zanon, S., & Leuangthong, O. (2002). Procedures and guidelines for assessing and reporting uncertainty in geostatistical reservoir modeling. In Centre for Computational Geostatistics (CCG) (vol 4, pp. 21/1–21/22)

  • Devore, J., & Peck, R. (2005). Statistics. The exploration and analysis of data. Toronto: Thomson Learning—Brooks/Cole.

    Google Scholar 

  • Fasso, A., & Perri, P. F. (2002). Sensitivity analysis. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Encyclopedia of environmetrics (pp. 1968–1982). Chichester: Willey.

    Google Scholar 

  • Genrich, J. F., & Sommer, F. S. (1989). Novel approach to sensitivity analysis. Journal of Petroleum Technology, 41(9), 930–932, 983–985.

  • Iyer, B. R., & Parida, G. (1989). Sensitivity analysis—a case study for oil exploration. SPE Journal, 1–8.

  • Jadhawar, P. S., & Sarma, H. K. (2008). Scaling and sensitivity analysis of gas-oil gravity drainage EOR. In SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth.

  • Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Li, J., & Walker, S. (2001). Sensitivity analysis of hole cleaning parameters in directional wells. SPE Journal, 6(4), 356–363.

    Article  Google Scholar 

  • Mollaei, A., Lake, L. W., & Delshad, M. (2011). Application and variance based sensitivity analysis of surfactant-polymer flood. In SPE Reservoir Simulation Symposium, Woodlands, Texas.

  • Mudford, B., & Kuch, S. (2003). Stochastic Sensitivity Analysis: Or What Happened to My Tornado Plot?. In SPE Annual Technical Conference and Exhibition, Denver.

  • Oakley, J. E., & O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society, 66(3), 751–769.

    Article  Google Scholar 

  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al. (2008). Global sensitivity analysis. The primer. Chichester: Wiley.

    Google Scholar 

  • Sobol, I. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1), 112–118.

    Google Scholar 

  • Stoner, M. A. (1972). Sensitivity analysis applied to a steady-state model of natural gas transportation systems. SPE Journal, 12(2), 115–125.

    Article  Google Scholar 

  • Watson, A. T. (1989). Sensitivity analysis of two-phase reservoir history matching. SPE Reservoir Engineering, 4(3), 319–324.

    Article  Google Scholar 

  • Wu, C. F. J., & Hamada, M. S. (2009). Experiments: Planning, analysis, and optimization (2nd ed.). New York: Wiley.

    Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to anonymous reviewers for comments that improved the quality of the paper. The financial support of the Centre for Computational Geostatistics (CCG) sponsoring companies is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniy Zagayevskiy.

Appendices

Appendix 1—Derivation of Sensitivity Coefficients from Linear and Quadratic Regression Models

The general expression of the regression model with assumed residual properties and algorithm for derivation of the regression coefficients are defined in Eqs. (35)–(44) (Johnson and Wichern 2007). A regression model is a probabilistic model whose coefficients must be estimated. The probabilistic part is depicted through error terms ε added to the deterministic model. The deviations from the mean are chosen as data values to mitigate the influence of the measurement units and to help derivation of the sensitivity coefficients.

$$ {\mathbf{y}}' = {\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}} $$
(35)
$$ {\mathbf{y}}' = {\mathbf{y}} - {\mathbf{1}} \cdot \bar{y} $$
(36)
$$ {\mathbf{x}}' = {\mathbf{x}} - {\mathbf{1}} \cdot {\bar{\mathbf{x}}} $$
(37)
$$ {\bar{\mathbf{x}}} = \left[ {\bar{x}_{1} \ldots \bar{x}_{K} } \right]_{1 \times K} $$
(38)
$$ \bar{y} = \sum\limits_{i = 1}^{n} {\frac{{y_{i} }}{n}} ,\quad \lim \left( {\bar{y}} \right)\mathop = \limits_{n \to \infty } E\left\{ Y \right\} = m_{Y} $$
(39)
$$ \bar{x}_{k} = \sum\limits_{i = 1}^{n} {\frac{{x_{k,i} }}{n}} ,\quad \lim \left( {\bar{x}_{k} } \right)\mathop = \limits_{n \to \infty } E\left\{ {X_{k} } \right\} = m_{{X_{k} }} ,\quad k = 1, \ldots ,K $$
(40)
$$ {\varvec{\upvarepsilon}}\sim N({\mathbf{0}},\,\sigma_{\varepsilon }^{2} \cdot {\mathbf{I}}) = \left\{ {\begin{array}{l} {{\varvec{\upvarepsilon}}\;{\text{follows}}\;{\text{normal}}\;{\text{distribution}}} \\ {E\left\{ {\varvec{\upvarepsilon}} \right\} = {\mathbf{0}}} \\ {{\text{COV}}\left\{ {\varvec{\upvarepsilon}} \right\} = \sigma_{\varepsilon }^{2} \cdot {\mathbf{I}}} \\ \end{array} } \right. $$
(41)
$$ {\hat{\mathbf{y}}}' = {\mathbf{x}}' \cdot {\varvec{\hat \upbeta}} $$
(42)
$$ {\varvec{\hat \upvarepsilon}} = {\mathbf{y}}' - {\hat{\mathbf{y}}}' $$
(43)
$$ \hbox{min} \left( {\text{RSS}} \right) = \hbox{min} \left( {{\varvec{\hat \upvarepsilon}}^{T} \cdot {\varvec{\hat \upvarepsilon}}} \right)\quad \Rightarrow \quad {\varvec{\hat \upbeta}} = \left[ {\left[ {{\mathbf{x}}'} \right]^{T} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{T} \cdot {\mathbf{y}}' $$
(44)

where y and x are the n × 1 vector and n × K matrix containing original data values of a model response Y and input variables X k , k = 1, …, K, respectively; n is the number of data; y′ and x′ are the n x 1 vector and n × K matrix, respectively, containing modified data values of the model response and input variables; \( \bar{y} \) is the average of the model response; \( {\bar{\mathbf{x}}} \) is the 1 × K row vector of average values of the input variables; 1 is the n × 1 column vector consisting of 1 s; m Y and \( m_{{X_{k} }} \) are the expected mean values of the model response and input variables, respectively; β is the K × 1 column vector consisting of regression coefficients; ε is the n × 1 column vector of normally distributed independent errors or residuals with zero mean and constant variance σ 2 ε ; \( {\hat{\mathbf{y}}}' \), \( {\varvec{\hat \upbeta}} \), and \( {\varvec{\hat \upvarepsilon}} \) are the estimates of model response, regression coefficients, and errors, respectively; and RSS is the residual sum of squares, which is used to estimate the regression coefficients. Regression coefficients that give the smallest RSS, in other words, the smallest deviations of the regression model from the actual data, are optimal regression coefficients. The form and properties of the linear and quadratic regression models are explained below.

The linear regression model or 1st-order regression model is the simplest member of the regression models family that can be used to fit the data. Linear regression model takes form of Eq. (45). The related regression model parameters for matrix form are explained in the subsequent Eqs. (46)–(48). We might draw the similarity between the simple kriging and proposed regression model, if spatial context of the data is ignored (Journel and Huijbregts 1978). Unrealistically influential data values and outliers might be removed from the data set to reduce bias in the sensitivity study.

$$ \hat{y}_{i}^{(1)} = \bar{y} + \sum\limits_{k = 1}^{K} {\hat{\beta }_{k}^{(1)} \cdot \left( {x_{k,i} - \bar{x}_{k} } \right)} ,\quad i = 1, \ldots ,n $$
(45)
$$ {\hat{\mathbf{y}}}'^{(1)} = \left[ {\begin{array}{l} {\hat{y}_{1}^{(1)} - \bar{y}} \\ \cdots \\ {\hat{y}_{n}^{(1)} - \bar{y}} \\ \end{array} } \right]_{n \times 1} $$
(46)
$$ {\mathbf{x}}'^{(1)} = \left[ {\begin{array}{lll} {x_{1,1} - \bar{x}_{1} } & \cdots & {x_{K,1} - \bar{x}_{K} } \\ \cdots & {} & \cdots \\ {x_{1,n} - \bar{x}_{1} } & \cdots & {x_{K,n} - \bar{x}_{K} } \\ \end{array} } \right]_{n \times K} $$
(47)
$$ {\varvec{\hat \upbeta}}^{({1})} = \left[ {\begin{array}{l} {\hat{\beta }_{1}^{\left( 1 \right)} } \\ \cdots \\ {\hat{\beta }_{K}^{\left( 1 \right)} } \\ \end{array} } \right]_{K \times 1} $$
(48)

The quadratic regression model takes form of Eq. (49), which is similar to the linear regression model except the interaction terms (product of two input variables). The re-occurring interaction terms between any two input variables are omitted in the quadratic regression model to avoid matrix singularity in the computation of the regression coefficients in Eq. (44). Note that interaction terms are treated as additional input variables and, in general, the form of the quadratic regression model does not differ much from the linear one. The parameters of the quadratic regression model for matrix form are explained in Eqs. (50)–(54).

$$ \begin{aligned} \hat{y}_{i}^{(2)} = & \bar{y} + \sum\limits_{k = 1}^{K} {\hat{\beta }_{k}^{(2)} \cdot \left( {x_{k,i} - \bar{x}_{k} } \right)} \\ & + \sum\limits_{k = 1}^{K} {\sum\limits_{k' = k}^{K} {\hat{\beta }_{kk'}^{(2)} \cdot \left( {\left( {x_{k,i} - \bar{x}_{k} } \right) \cdot \left( {x_{k',i} - \bar{x}_{k'} } \right) - \overline{{\left( {x_{k,i} - \bar{x}_{k} } \right) \cdot \left( {x_{k',i} - \bar{x}_{k'} } \right)}} } \right)} } ,\quad i = 1, \ldots ,n \\ \end{aligned} $$
(49)
$$ {\hat{\mathbf{y}}}'^{(2)} = \left[ {\begin{array}{l} {\hat{y}_{1}^{(2)} - \bar{y}} \\ \cdots \\ {\hat{y}_{n}^{(2)} - \bar{y}} \\ \end{array} } \right]_{n \times 1} $$
(50)
$$ \begin{aligned} {\mathbf{x}}'^{(2)} = & \left[ {\begin{array}{*{20}c} {x_{1,1} - \bar{x}_{1} } & \cdots & {x_{K,1} - \bar{x}_{K} } \\ \cdots & {} & \cdots \\ {x_{1,n} - \bar{x}_{1} } & \cdots & {x_{K,n} - \bar{x}_{K} } \\ \end{array} } \right. \\ & \quad \quad \quad \quad \quad \quad \begin{array}{*{20}c} {\left( {x_{1,1} - \bar{x}_{1} } \right) \cdot \left( {x_{1,1} - \bar{x}_{1} } \right) - \overline{{\left( {x_{1,1} - \bar{x}_{1} } \right) \cdot \left( {x_{1,1} - \bar{x}_{1} } \right)}} } & \cdots \\ {} \cdots {} \\ {\left( {x_{1,n} - \bar{x}_{1} } \right) \cdot \left( {x_{1,n} - \bar{x}_{1} } \right) - \overline{{\left( {x_{1,n} - \bar{x}_{1} } \right) \cdot \left( {x_{1,n} - \bar{x}_{1} } \right)}} } & \cdots \\ \end{array} \\ & \left. {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \begin{array}{*{20}c} {\left( {x_{K,1} - \bar{x}_{K} } \right) \cdot \left( {x_{K,1} - \bar{x}_{K} } \right) - \overline{{\left( {x_{K,1} - \bar{x}_{K} } \right) \cdot \left( {x_{K,1} - \bar{x}_{K} } \right)}} } \\ \cdots \\ {\left( {x_{K,n} - \bar{x}_{K} } \right) \cdot \left( {x_{K,n} - \bar{x}_{K} } \right) - \overline{{\left( {x_{K,n} - \bar{x}_{K} } \right) \cdot \left( {x_{K,n} - \bar{x}_{K} } \right)}} } \\ \end{array} } \right]_{n \times (K + 3) \cdot K/2} \\ \end{aligned} $$
(51)
$$ {\varvec{\hat \upbeta}}^{({2})} = \left[{\begin{array}{*{20}c} {\hat{\beta }_{1}^{\left( 2 \right)} } \\\cdots \\ {\hat{\beta }_{K}^{\left( 2 \right)} } \\ {\hat{\beta}_{11}^{\left( 2 \right)} } \\ \cdots\\ {\hat{\beta }_{KK}^{\left( 2 \right)} } \\\end{array} } \right]_{(K + 3) \cdot K/2 \times 1} $$
(52)
$$ \overline{{\left( {x_{k,i} - \bar{x}_{k} } \right) \cdot \left( {x_{k',i} - \bar{x}_{k'} } \right)}} = \sum\limits_{i = 1}^{n} {\frac{{\left( {x_{k,i} - \bar{x}_{k} } \right) \cdot \left( {x_{k',i} - \bar{x}_{k'} } \right)}}{n},\quad k,k' = 1, \ldots ,n} $$
(53)
$$ \lim \left( {\overline{{\left( {x_{k,i} - \bar{x}_{k} } \right) \cdot \left( {x_{k',i} - \bar{x}_{k'} } \right)}} } \right)\mathop = \limits_{n \to \infty } {\text{COV}}\left\{ {X_{k} ,X_{k'} } \right\},\quad k,k' = 1, \ldots ,n $$
(54)

By applying definition of the sensitivity coefficients to the regression models, we would get the following relationship between sensitivity and regression coefficients as shown in Eqs. (55)–(57).

$$ \mu_{k}^{(1)} = \left. {\,\frac{{\partial Y^{(1)} }}{{\partial X_{k} }}} \right|_{{X_{l} = m_{{X_{l} }} ,\forall l \ne k}} = \beta_{k}^{(1)} $$
(55)
$$ \mu_{k}^{(2)} = \left. {\,\frac{{\partial Y^{(2)} }}{{\partial X_{k} }}} \right|_{{X_{l} = m_{{X_{l} }} ,\forall l \ne k}} = \beta_{k}^{(2)} $$
(56)
$$ \mu_{kk'}^{(2)} = \left. {\,\frac{{\partial^{2} Y^{(2)} }}{{\partial X_{k} \cdot \partial X_{k'} }}} \right|_{{X_{l} = m_{{X_{l} }} ,\forall l \ne k,k'}} = \left\{ {\begin{array}{*{20}c} {\beta_{kk'}^{(2)} ,\quad k \ne k'} \\ {2\beta_{kk'}^{(2)} ,\quad k = k} \\ \end{array} } \right. $$
(57)

Appendix 2—Derivation of 1st- and 2nd-Order Moments of Regression Model Parameters

Derivation of Mean and Variance of the Estimated Regression Errors

In the following derivations, the matrix x′ of input variables’ deviations from the mean is treated as a constant.

$$ \begin{aligned} E\left\{ {{\hat{\varvec{\upvarepsilon }}}}\right\}\, & = E\left\{ {{\mathbf{y}}' - {\hat{\mathbf{y}}}'}\right\} = E\left\{ {{\mathbf{y}}' - {\mathbf{x}}' \cdot {\hat{\varvec{\upbeta }}}} \right\} \\ & = E\left\{ {{\mathbf{y}}'- {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'}\right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}'}\right\} \\ & = {\mathbf{y}}'\left[ {{\mathbf{I}} - {\mathbf{x}}'\cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot{\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'}\right]^{\text{T}} } \right] \\ \end{aligned} $$
(58)
$$ VAR\left\{ {{\varvec{\hat \upvarepsilon}}} \right\}\, = E\left\{ {\left[ {{\mathbf{y}}' - {\hat{\mathbf{y}}}' - E\left\{ {{\mathbf{y}}' - {\hat{\mathbf{y}}}'} \right\}} \right] \cdot \left[ {{\mathbf{y}}' - {\hat{\mathbf{y}}}' - E\left\{ {{\mathbf{y}}' - {\hat{\mathbf{y}}}'} \right\}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {{\mathbf{y}}' - {\mathbf{x}}' \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{y}}' - {\mathbf{x}}' \cdot {\varvec{\hat \upbeta}}} \right\}} \right] \cdot \left[ {{\mathbf{y}}' - {\mathbf{x}}' \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{y}}' - {\mathbf{x}}' \cdot {\varvec{\hat \upbeta}}} \right\}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {{\mathbf{y}}' - {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}'} \right] \cdot \left[ {{\mathbf{y}}' - {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}'} \right]^{\text{T}} } \right\} = \left[ {{\mathbf{I}} - {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} } \right] \cdot VAR\left\{ {{\mathbf{y}}'} \right\} \cdot \left[ {{\mathbf{I}} - {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} } \right]^{\text{T}} = \sigma^{2}_{\varepsilon} \cdot \left[ {{\mathbf{I}} - {\mathbf{x}}' \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} } \right] $$
(59)

Derivation of Mean and Variance of the Model Response

$$ E\left\{ {{\mathbf{y}}'} \right\} = E\left\{ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right\} = E\left\{ {{\mathbf{x}}' \cdot {\varvec{\upbeta}}} \right\} + E\left\{ {\varvec{\upvarepsilon}} \right\} = {\mathbf{x}}' \cdot {\varvec{\upbeta}} $$
(60)
$$ {\text{VAR}}\left\{ {{\mathbf{y}}'} \right\} = E\left\{ {\left[ {{\mathbf{y}}' - E\left\{ {{\mathbf{y}}'} \right\}} \right] \cdot \left[ {{\mathbf{y}}' - E\left\{ {{\mathbf{y}}'} \right\}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}} - E\left\{ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right\}} \right] \cdot \left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}} - E\left\{ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right\}} \right]^{\text{T}} } \right\} = E\left\{ {{\varvec{\upvarepsilon \upvarepsilon }}^{\text{T}} } \right\} = \sigma_{\varepsilon }^{2} \cdot {\mathbf{I}} $$
(61)

Derivation of Mean and Variance of Estimated Regression Coefficients

$$ {\varvec{\hat \upbeta}} = \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}' = \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot \left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right] $$
(62)
$$ E\left\{ {{\varvec{\hat \upbeta}}} \right\}\, = E\left\{ {\left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot \left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right]} \right\} = \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}' \cdot {\varvec{\upbeta}} + \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot E\left\{ {\varvec{\upvarepsilon}} \right\} = {\varvec{\upbeta}} $$
(63)
$$ VAR\left\{ {{\varvec{\hat \upbeta}}} \right\}\, = E\left\{ {\left[ {{\varvec{\hat \upbeta}} - E\left\{ {{\varvec{\hat \upbeta}}} \right\}} \right] \cdot \left[ {{\varvec{\hat \upbeta}} - E\left\{ {{\varvec{\hat \upbeta}}} \right\}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {{\varvec{\hat \upbeta}} - {\varvec{\upbeta}}} \right] \cdot \left[ {{\varvec{\hat \upbeta}} - {\varvec{\upbeta}}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {\left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}' - {\varvec{\upbeta}}} \right] \cdot \left[ {\left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{y}}'} \right]^{\text{T}} - {\varvec{\upbeta}}} \right\} = E\left\{ {\left[ {\left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot \left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right] - {\varvec{\upbeta}}} \right] \cdot \left[ {\left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot \left[ {{\mathbf{x}}' \cdot {\varvec{\upbeta}} + {\varvec{\upvarepsilon}}} \right] - {\varvec{\upbeta}}} \right]^{\text{T}} } \right\} = \sigma_{\varepsilon }^{2} \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} $$
(64)

Derivation of the Mean and Variance of the Predicted Model Response and Its Mean

The confidence intervals and probability intervals should be reported for the predicted model response values conditional to a certain set of the input variables x0, the forms of which are different for linear and quadratic regression models as defined in Eqs. (65) and (66). The confidence interval corresponds to the uncertainty in the mean of the predicted model response values, and probability interval is related to the uncertainty in the prediction of the model response values.

$$ {\mathbf{x}}_{0}^{'(1)} = \left[ {\begin{array}{*{20}c} {x_{1,0} - \bar{x}_{1} } & \cdots & {x_{K,0} - \bar{x}_{K} } \\ \end{array} } \right]_{1 \times K} $$
(65)
$$ {\mathbf{x}}_{0}^{'(2)} = \left[ {\begin{array}{*{20}c} {x_{1,0} - \bar{x}_{1} } \\ \cdots \\ {x_{K,0} - \bar{x}_{K} } \\ {\left( {x_{1,0} - \bar{x}_{1} } \right) \cdot \left( {x_{1,0} - \bar{x}_{1} } \right) - \overline{{\left( {x_{1,0} - \bar{x}_{1} } \right) \cdot \left( {x_{1,0} - \bar{x}_{1} } \right)}} } \\ \cdots \\ {\left( {x_{K,0} - \bar{x}_{K} } \right) \cdot \left( {x_{K,0} - \bar{x}_{K} } \right) - \overline{{\left( {x_{K,0} - \bar{x}_{K} } \right) \cdot \left( {x_{K,0} - \bar{x}_{K} } \right)}} } \\ \end{array} } \right]_{K \cdot (K + 3)/2 \times 1}^{\text{T}} $$
(66)

The predicted model response mean and estimated model response value can be expressed as in Eqs. (67) and (68), respectively. Their corresponding expected values and variances are defined in Eqs. (69)–(72). The error is assumed to be distributed normally with zero mean and σ 2 ε variance and independent from the input variables.

$$ \hat{m}_{{y'_{0} |{\mathbf{x}}'_{0} }} = E\left\{ {y'_{0} |{\mathbf{x}}'_{0} } \right\} = {\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} $$
(67)
$$ \hat{y}'_{0} = {\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} + \hat{\varepsilon }_{0} $$
(68)
$$ E\left\{ {\hat{m}_{{y'_{0} |{\mathbf{x}}'_{0} }} } \right\} = {\mathbf{x}}'_{0} \cdot {\varvec{\upbeta}} $$
(69)
$$ E\left\{ {\hat{y}'_{0} } \right\} = {\mathbf{x}}'_{0} \cdot {\varvec{\upbeta}} $$
(70)
$$ {\text{VAR}}\left\{ {\hat{m}_{{y'_{0} |{\mathbf{x}}'_{0} }} } \right\}\, = E\left\{ {\left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}}} \right\}} \right] \cdot \left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}}} \right\}} \right]^{\text{T}} } \right\} = {\mathbf{x}}'_{0} \cdot {\text{VAR}}\left\{ {{\varvec{\hat \upbeta}}} \right\} \cdot \left[ {{\mathbf{x}}'_{0} } \right]^{\text{T}} = \sigma^{2} \cdot {\mathbf{x}}'_{0} \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'_{0} } \right]^{\text{T}} $$
(71)
$$ {\text{VAR}}\left\{ {\hat{y}'_{0} } \right\}\, = E\left\{ {\left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} + \hat{\varepsilon }_{0} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} + \hat{\varepsilon }_{0} } \right\}} \right] \cdot \left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} + \hat{\varepsilon }_{0} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} + \hat{\varepsilon }_{0} } \right\}} \right]^{\text{T}} } \right\} = E\left\{ {\left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}}} \right\}} \right] \cdot \left[ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}} - E\left\{ {{\mathbf{x}}'_{0} \cdot {\varvec{\hat \upbeta}}} \right\}} \right]^{\text{T}} } \right\} + E\left\{ {\hat{\varepsilon }_{0} \cdot \left[ {\hat{\varepsilon }_{0} } \right]^{\text{T}} } \right\} = {\text{VAR}}\left\{ {\hat{m}_{{y'_{0} |{\mathbf{x}}'_{0} }} } \right\} + \sigma^{2}_\varepsilon = \sigma^{2}_\varepsilon \cdot \left( {1 + {\mathbf{x}}'_{0} \cdot \left[ {\left[ {{\mathbf{x}}'} \right]^{\text{T}} \cdot {\mathbf{x}}'} \right]^{ - 1} \cdot \left[ {{\mathbf{x}}'_{0} } \right]^{\text{T}} } \right) $$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagayevskiy, Y., Deutsch, C.V. A Methodology for Sensitivity Analysis Based on Regression: Applications to Handle Uncertainty in Natural Resources Characterization. Nat Resour Res 24, 239–274 (2015). https://doi.org/10.1007/s11053-014-9241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9241-0

Keywords

Navigation