Skip to main content
Log in

Multivariate Statistical Analysis and Geochemical Modeling to Characterize the Surface Water of Oued Chemora Basin, Algeria

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Multivariate statistical methods and inverse geochemical modeling were jointly used to deduce the genetic origin of chemical parameters of surface water in the Oued Chemora Basin. The analysis of variance indicates that variations of all parameters at the three stations are significant except for pH and T (p > 0.05). R-mode cluster analysis reveals two distinct groups at each station and led to the conclusion that the major ion chemistry in the three stations is derived from organic and artificial fertilizers due to agricultural activities in the area and water–rock interaction. Mineral saturation indices, calculated from major ions, indicate that the surface water is generally super-saturated with carbonate phases, and all the water samples are under-saturated with respect to gypsum, halite, and CO2(g). In a broad sense, the reactions responsible for the hydrochemical evolution in the Basin fall into three categories: (1) dissolution of evaporite minerals; (2) precipitation of carbonate minerals; and (3) ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in western Karoo, South Africa. Journal of Hydrology, 241(1–2), 91–103.

    Article  Google Scholar 

  • Alberto, W. D., Del Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & De Los Angeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Research, 35, 2881–2894.

    Article  Google Scholar 

  • Alkarkhi, F. M. A., Ismail, N., & Easa, A. M. (2008). Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. Journal of Hazardous Materials, 150, 783–789.

    Article  Google Scholar 

  • Alther, G. A. (1979). A simplified statistical sequence applied to routine water quality analysis: A case history. Ground Water, 17, 556–561.

    Article  Google Scholar 

  • Back, W., & Hanshaw, B. B. (1970). Comparison of chemical hydrology of Florida and Yucatan. Journal of Hydrology, 10, 360–368.

    Article  Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria). Geoderma, 159, 390–398.

    Article  Google Scholar 

  • Belkhiri, L., & Mouni, L. (2013). Geochemical modeling of groundwater in the El Eulma area, Algeria. Desalination and Water Treatment, 51, 1468–1476.

    Article  Google Scholar 

  • Briz-Kishore, B. H., & Murali, G. (1992). Factor analysis of revealing hydrochemical characteristics of a watershed. Environmental Geology and Water Sciences, 19(1), 3–9.

    Article  Google Scholar 

  • Cerling, T. E., Pederson, B. L., & Damm, K. L. V. (1989). Sodium–Calcium ion exchange in the weathering of shales: Implications for global weathering budgets. Geology, 17, 552–554.

    Article  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Farnham, I. M., Stetzenbach, K. J., Singh, A. K., & Johannesson, K. H. (2000). Deciphering groundwater flow systems in Oasis Valley, Nevada, Using trace element chemistry, multivariate statistics, and Geographical Information System. Mathematical Geology, 32, 943–968.

    Article  Google Scholar 

  • Fisher, R. S., & Mulican, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeology Journal, 10(4), 455–474.

    Google Scholar 

  • Güler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and Groundwater chemistry in Indian wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 285, 177–198.

    Article  Google Scholar 

  • Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pissuerga River, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  Google Scholar 

  • Katz, B. G., Coplen, T. B., Bullen, T. D., & Davis, J. H. (1998). Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled Karst. Groundwater, 35(6), 1014–1028.

    Article  Google Scholar 

  • Kuells, C., Adar, E. M., & Udluft, P. (2000). Resolving patterns of ground water flow by inverse hydrochemical modeling in a semiarid Kalahari basin. Tracers and Modelling in Hydrogeology, 262, 447–451.

    Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Li, S., Gu, S., Liu, W., Han, H., & Zhang, Q. (2008). Water quality in relation to the land use and land cover in the Upper Han River basin, China. Catena, 75, 216–222.

    Article  Google Scholar 

  • Locsey, K. L., & Cox, M. E. (2003). Statistical and hydrochemical methods to compare basaltand basement rock-hosted groundwaters: Atheron Tablelands, northeastern Australia. Environmental Geology, 43(6), 698–713.

    Google Scholar 

  • Lopez-Chicano, M., Bouamama, M., Vallejos, A., & Pulido, B. A. (2001). Factors which determine the hydrogeochemical behavior of karstic springs: A case study from the Betic Cordilleras, Spain. Applied Geochemistry, 16(9–10), 1179–1192.

    Article  Google Scholar 

  • Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31–59.

    Article  Google Scholar 

  • Meng, S. X., & Maynard, J. B. (2001). Use of multivariate analysis to formulate conceptual models of geochemical behavior: Water chemical data from the Botucata Aquifer in Sao Paulo state, Brazil. Journal of Hydrology, 250, 78–97.

    Article  Google Scholar 

  • Pacheco, F. A. L., & Szocs, T. (2006). “Dedolomitization reactions’’ driven by anthropogenic activity on loessy Sediments, SW Hungary. Applied Geochemistry, 21, 614–631.

    Article  Google Scholar 

  • Pandey, S. K., Singh, A. K., & Hasnain, S. I. (2001). Hydrochemical characteristics of meltwater draining from Pindari glacier, Kumon Himalaya. Journal Geological Society of India, 57, 519–527.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geological Survey, Water Resources Investigations Report 99-4259, Washington, DC, p. 326.

  • Pereira, H. G., Renca, S., & Sataiva, J. (2003). A case study on geochemical anomaly identification through principal component analysis supplementary projection. Applied Geochemistry, 18, 37–44.

    Article  Google Scholar 

  • Plummer, L. N., & Back, M. (1980). The mass balance approach: Application to interpreting the chemical evolution of hydrological systems. American Journal of Science, 280, 130–142.

    Article  Google Scholar 

  • Reeve, A. S., Siegel, D. I., & Glaser, P. H. (1996). Geochemical controls on peatland pore water from the Hudson Bay lowland: A multivariate statistical approach. Journal of Hydrology, 181(1–4), 285–304.

    Article  Google Scholar 

  • Rodier, J. (1996). L’analyse de l’eau, eaux naturelle, eaux résiduaires, eau de mer (8e éd.). Paris: Dunod.

  • Rowell, D. L. (1994). Soil science: Methods and applications. Longman and Scientific Technical, p. 350.

  • Sarin, M. M., Krishnaswamy, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica et Cosmochimica Acta, 53, 997–1009.

    Article  Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (1998). Major ion chemistry and control of weathering in a high altitude basin, Alaknanda, Garhwal Himalaya, India. Hydrological Sciences Journal, 43, 825–845.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods. Ames: Iowa State University Press.

    Google Scholar 

  • STATISTICA® 5.0 for Windows. (1998). StatSoft, Inc.,Tulsa OK. USDA, Natural Resources Conservation Services, 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436, p. 871

  • Thomas, J. M., Welch, A. H., & Preissler, A. M. (1989). Geochemical evolution of ground water in Smith Creek valley—a hydrologically closed basin in central Nevada, USA. Applied Geochemistry, 4, 493–510.

    Article  Google Scholar 

  • Tiri, A. (2005). Etude Spatio-Temporelle des ecoulements de surface et leur qualite biochimique (cas du basin versant de l’oued Reboa á Koudiat Medouar). Thesis, University of Batna, Algeria

  • Vila, J. M. (1980). La chaîne Alpine d’Algérie orientale et des confins Algéro-Tunisiens. Thesis of doctorate be-Sc. Nat. Paris VI, France, p. 665

  • Wang, Y., Ma, T., & Luo, Z. (2001). Geostatistical and geochemical analysis of surface water leakage into groundwater on regional scale: A case study in the Liulin karst system, northwestern China. Journal of Hydrology, 246(1–4), 223–234.

    Article  Google Scholar 

  • Ward, J. H, Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • WHO. (2006). Guidelines for drinking-water quality, vol. 1 Recommendations (3rd ed.). Geneva: World Health Organization.

  • Wildi, W. (1983). La chaîne tello-rifaine (Algérie, Maroc, Tunisie) structure, stratigraphie et évolution du Trias au Miocène. Journal. Géographie Physique Géologique, 24(3), 201–258.

    Google Scholar 

  • Williams, R. E. (1982). Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water, 20, 466–478.

    Article  Google Scholar 

  • Zhu, C., & Anderson, G. (2002). Environmental applications of geochemical modeling (p. 284). Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank anonymous reviewers and the editor-in-chief of NARR for their constructive comments which have helped in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Tiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiri, A., Lahbari, N. & Boudoukha, A. Multivariate Statistical Analysis and Geochemical Modeling to Characterize the Surface Water of Oued Chemora Basin, Algeria. Nat Resour Res 23, 379–391 (2014). https://doi.org/10.1007/s11053-014-9239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-014-9239-7

Keywords

Navigation