Skip to main content
Log in

Functionalized silver nanoparticles with graphene quantum dots shell layer for effective antibacterial action

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) as a shell layer was coated on the surface of silver nanoparticles (AgNPs) to obtain an effective antibacterial composite (GQDs@AgNPs). The structures and antibacterial properties of AgNPs, GQDs, and GQDs@AgNPs were studied. SEM and TEM results indicated that GQDs were coated on the surface of AgNPs. For GQDs@AgNPs, the core size of AgNPs was about 20 nm, and the shell thickness of GQDs was about 5 nm. The formation and antibacterial mechanism of GQDs@AgNPs composite materials were discussed in detail. It showed excellent antibacterial properties for E. coli and S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50:1853–1860

    Article  CAS  Google Scholar 

  • Chen M, Yang Z, Wu H (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6:2873–2877

    CAS  Google Scholar 

  • Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H (2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 6:1879–1889

    Article  CAS  Google Scholar 

  • Gao XH (2013) Preparation and properties of nanoscaled silver/natural polymer antibacterial sols. Dissertation, Taiyuan University of Technology

  • Gao S, Ge W, Zhao C, Cheng C, Jiang H, Wang X (2015) Novel conjugated Ag@PNIPAM nanocomposites for an effective antibacterial wound dressing. RSC Adv 5:25870–25876

    Article  CAS  Google Scholar 

  • Gordon O, Vig Slenters T, Brunetto PS (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54(10):4208–4218

    Article  CAS  Google Scholar 

  • He T, Liu H, Zhou Y (2014) Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 27(4):673–682

    Article  CAS  Google Scholar 

  • Hui LW (2016) Antibacterial properties of two-dimensional carbon nanomaterials. Dissertation, University of Science and Technology of China

  • Jung WK, Koo HC, Kim KW (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  CAS  Google Scholar 

  • Kim JD, Yun H, Kim GC, Lee CW, Kim HC (2013) Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites. Appl Surf Sci 283:227–233

    Article  CAS  Google Scholar 

  • Kuo N, Chen Y, Wu C, Huang C, Chan Y, Chen I (2016) One-pot synthesis of hydrophilic and hydrophobic N-doped graphene quantum dots via exfoliating and disintegrating graphite flakes. Sci Rep 6:30426

    Article  CAS  Google Scholar 

  • Li WR, Xic XB, Shi QS (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  Google Scholar 

  • Maas M (2016) Carbon nanomaterials as antibacterial colloid. Materials 9:617

    Article  CAS  Google Scholar 

  • Nanda SS, Yi DK, Kim K (2016) Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep 6:28443

    Article  CAS  Google Scholar 

  • Niu X, Yang W (2015) A novel strategy for the detection of tert-butylhydroquinone based on graphene quantum dots and silver nanoparticle modified glass carbon electrode. Can J Chem 93:648–654

    Article  CAS  Google Scholar 

  • Pan DY, Zhang JC, Li Z (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

  • Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag–Graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  • Porcaro F, Carlini L, Ugolini A, Visaggio D, Visca P, Fratoddi I, Venditti I, Meneghini C, Simonelli L, Marini C, Olszewski W, Ramanan N, Luisetto I, Battocchio C (2016) Synthesis and structural characterization of silver nanoparticles stabilized with 3-mercapto-1-propansulfonate and 1-thioglucose mixed thiols for antibacterial applications. Materials 9:1028

    Article  CAS  Google Scholar 

  • Prasad K, Lekshmi GS (2017) Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against gram-positive and gram-negative bacteria. Sci Rep 7:1591

    Article  CAS  Google Scholar 

  • Quan Y (2017) Investigations on the preparation of Graphene quantum dots-silver nanoparticles and their antibacterial performances. Dissertation, Northeastern University

  • Sanaz A, Subhasis G, Yves C (2019) Fate and inhibitory effect of silver nanoparticles in high rate moving bed biofilm reactors. Sci Total Environ 647:1199–1210

    Article  CAS  Google Scholar 

  • Sanchez VC, Ashish J, Robert HH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  CAS  Google Scholar 

  • Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J 18:12522–12528

    Article  CAS  Google Scholar 

  • Su HL, Chou CC, Hung DJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30(30):5979–5987

    Article  CAS  Google Scholar 

  • Sun JD, Zhang BY, Li TZ (2017) Release of silver ions from silver nanoparticles and their cytotoxicity. JEOM 34(07):636–641

    Google Scholar 

  • Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R (2013) Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces 5:3867–3874

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Xu T, Liao HB, Yao CJ, Liu Y, Li Z, Chen ZW, Pan DY, Sun LT, Wu MH (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357

    Article  CAS  Google Scholar 

  • Wang K, Ji Q, Li H, Guan F, Zhang D, Feng H, Fan H (2017) Synthesis and antibacterial activity of silver@carbon nanocomposites. J Inorg Biochem 166:64–67

    Article  CAS  Google Scholar 

  • Wang L, Lu Z, Ling F, Qin H, Zhang Z, Zhang J, Lei X, Dai P, Zhang X (2018) Two-step process for synthesizing flower-like silver nanoparticles by wet-chemical method. Mater Lett 233:184–187

    Article  CAS  Google Scholar 

  • Wolk A, Rosenthal M, Neuhaus S, Huber K, Brassat K, Lindner J, Grothe R, Grundmeier G, Bremser W, Wilhelm R (2018) A novel lubricant based on covalent functionalized graphene oxide quantum dots. Sci Rep 8:5843

    Article  CAS  Google Scholar 

  • Yang P (2015) Synthesis, characterization and photoluminescence mechanism of grapheme quantum dots. Dissertation, Shanghai Jiao Tong University

  • Yang W, Shen C, Ji Q (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):85–102

    Article  CAS  Google Scholar 

  • Yang J, Zheng H, Han S, Jiang Z, Chen X (2015) The synthesis of nano-silver/sodium alginate composites and their antibacterial properties. RSC Adv 5:2378–2392

    Article  CAS  Google Scholar 

  • Yang Y, Xu S, Xu G, Liu R, Xu A, Chen S, Wu L (2019) Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Sci Total Environ 647:1088–1096

    Article  CAS  Google Scholar 

  • Ye R, Xiang C, Lin J, Peng Z, Huang K, Yan Z, Cook N, Samuel E, Hwang C, Ruan G, Ceriotti G, Raji A, Marti A, Tour J (2013) Coal as an abundant source of graphene quantum dots. Nat Commun 4:2943

    Article  CAS  Google Scholar 

  • Yu L, Zhang Y, Zhang B (2014) Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci Rep 4:4551

    Article  CAS  Google Scholar 

  • Zeng L (2010) The preparation and bacteriostatic activities of silver loaded inorganic oxide nanocomposites. Dissertation, Hunan University of Technology

  • Zeng ZP, Chen SF, Tan TTY, Xiao FX (2018) Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal Today 315:171–183

    Article  CAS  Google Scholar 

  • Zhan F, Sheng F, Yan X, Zhu Y, Jin W, Li J, Li B (2017) Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: surface modification of sliver nanoparticles. Int J Biol Macromol 104:813–820

    Article  CAS  Google Scholar 

  • Zhang YJ, Liu KL (2013) Antibacterial properties of oral nano-silver inorganic antibacterial materials. CJTER 17(03):544–551

    CAS  Google Scholar 

  • Zhang XL, Wei CB, Yu DS (2018) The antimicrobial activity and application of graphene quantum dots in oral medicine. JPTSD 26(11):734–737

    Google Scholar 

Download references

Funding

This work was supported by the funding of Key R&D Program Projects in Shanxi Province (Grant No. 2017030321015-4), the Scientific and Technological Innovation Project for Excellent Talents in Shanxi Province (Grant No. 201805D211001), the National Natural Science Foundation of China (Grant No. 51302183), and the Natural Science Foundation of Shanxi Province (Grant No. 201801D121096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Mei Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, L., Wang, J. et al. Functionalized silver nanoparticles with graphene quantum dots shell layer for effective antibacterial action. J Nanopart Res 22, 124 (2020). https://doi.org/10.1007/s11051-020-04845-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04845-3

Keywords

Navigation