Skip to main content
Log in

Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@RGO nanocomposite

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A heterostructure nanocomposite of Ag3PO4 grafted onto reduced graphene oxide at different weight percentages is synthesised by sol-gel-hydrothermal method and characterised by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron, diffuse reflectance, Raman, Fourier transform infrared, and photoluminescence spectroscopy. The material is used for adsorption and photodegradation of Acid Blue 25 dye in aqueous solution; both are influenced by catalyst load, initial dye concentration, and solution pH. Adsorption follows pseudo first-order kinetics, which can be best fitted with the Lagergren pseudo first-order kinetic model and photocatalytic degradation, a modified Langmuir–Hinshelwood model. Photocatalytic performance of Ag3PO4 is greatly improved when embedded in reduced graphene oxide which is appertained to the small sized, well-dispersed Ag3PO4 particles, high adsorption, and low e+–h pair recombination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al Kausor M, Ali AM, Gupta SS, Chakrabortty D (2019a) Synthesis, characterization and application of graphene-based silver orthophosphate nanocomposite in organic dye degradation. Desalin Water Treat 340:337–346

  • Al Kausor M, Gupta SS, Chakrabortty D (2019b) Ag3PO4-based nanocomposites and their applications in photodegradation of toxic organic dye contaminated wastewater: review on material design to performance enhancement. J Saudi Chem Soc 24(1):20–41

  • Arora C, Soni S, Sahu S, Mittal J, Kumar P, Bajpai PK (2019) Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. J Mol Liq 284:343–352

    Article  CAS  Google Scholar 

  • Barakat MA, Kumar R, Balkhyour M, Taleb MA (2019) Novel Al2O3/GO/halloysite nanotube composite for sequestration of anionic and cationic dyes. RSC Adv 9(24):13916–13926

    Article  CAS  Google Scholar 

  • Bi Y, Ouyang S, Umezawa N, Cao J, Ye J (2011) Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J Am Chem Soc 133(17):6490–6492

    Article  CAS  Google Scholar 

  • Bouzaida I, Ferronato C, Chovelon JM, Rammah ME, Herrmann JM (2004) Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach. J Photochem Photobiol A Chem 168(1–2):23–30

    Article  CAS  Google Scholar 

  • Bulut E, Ozacar M, Sengil IA (2008) Equilibrium and kinetic data and process design for adsorption of Congo red onto bentonite. J Hazard Mater 154(1–3):613–622

    Article  CAS  Google Scholar 

  • Chai B, Li J, Xu Q (2014) Reduced graphene oxide grafted Ag3PO4 composites with efficient photocatalytic activity under visible-light irradiation. Ind Eng Chem Res 53(21):8744–8752

    Article  CAS  Google Scholar 

  • Chakrabortty D, Gupta SS (2013) Decolourisation of Metanil yellow by visible-light photocatalysis with N-doped TiO2 nanoparticles: influence of system parameters and kinetic study. Desalin Water Treat 52(28–30):5528–5540

    Google Scholar 

  • Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y (2010) Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4(11):6425–6432

    Article  CAS  Google Scholar 

  • Chen G, Sun M, Wei M, Zhang Y, Zhu B, Du B (2013a) Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. J Hazard Mater 244:86–93

    Article  CAS  Google Scholar 

  • Chen Z, Wang W, Zhang Z, Fang X (2013b) High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J Phys Chem C 117(38):19346–19352

    Article  CAS  Google Scholar 

  • Çiplak Z, Getiren B, Gökalp C, Yıldız A, Yıldız N (2020) Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: catalytic performance. Chem Eng Commun 207(4):559–573. https://doi.org/10.1080/00986445.2019.1613227

    Article  CAS  Google Scholar 

  • Cui C, Wang Y, Liang D, Cui W, Hu H, Lu B, Xu S, Li X, Wang C, Yang Y (2014) Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible-light. Appl Catal B Environ 158:150–160

    Article  CAS  Google Scholar 

  • Dong P, Wang Y, Cao B, Xin S, Guo L, Zhang J, Li F (2013) Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability. Appl Catal B Environ 132:45–53

    Article  CAS  Google Scholar 

  • Ge M, Zhu N, Zhao YP, Li J, Liu L (2012) Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Ind Eng Chem Res 51:5167–5173

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Ghodbane H, Hamdaoui O (2009) Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride. Ultrason Sonochem 16(4):455–461

    Article  CAS  Google Scholar 

  • Gregory AR, Elliott J, Kluge P (1981) Ames testing of direct black 38 parallels carcinogenicity testing. J Appl Toxicol 1(6):308–313

    Article  CAS  Google Scholar 

  • Gupta VK (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manag 90(8):2313–2342

    Article  CAS  Google Scholar 

  • Gupta SS, Chaktabortty D (2017) Photocatalytic decolourisation of a toxic dye, Acid Blue 25, with graphene based n-doped titania. Indian J Chem 56A:1293–1301

    Google Scholar 

  • Gupta VK, Kumar R (2013) Adsorptive removal of dyes from aqueous solutions onto carbon nanotubes: a review. Adv Colloid Interf Sci 193-194:24–34

    Article  CAS  Google Scholar 

  • Herrmann JM(1999) Water treatment by heterogeneous photocatalysis. In: F. Jansen, R.A. van Santen (Eds.), Environmental Catalysis, Catalytic Science Series, vol. 1, Imperial College Press, London, Chapter 9, pp 171–194

  • Ho YS (2004) Selection of optimum sorption isotherm. Carbon 42(10):2115–2116

    Article  CAS  Google Scholar 

  • Huang K, Lv Y, Zhang W, Sun S, Yang B, Chi F, Ran S, Liu X (2015) One step synthesis of Ag3PO4/Ag photocatalyst with visible-light photocatalytic activity. Mater Res 18:939–945

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  • Juang LC, Wang CC, Lee CK (2006) Adsorption of basic dyes onto MCM-41. Chemosphere 64(11):1920–1928

    Article  CAS  Google Scholar 

  • Lagergren SK (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  • Li J, Tao T, Li X, Zuo J, Li T, Lu J, Li S, Chen L, Xi C, Liu Y, Wang Y (2009) A spectrophotometric method for determination of chemical oxygen demand using home-made reagents. Desalination 239:139–145

    Article  CAS  Google Scholar 

  • Liang QH, Shi Y, Ma WJ, Li Z, Yang XM (2012) Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Phys Chem Chem Phys 14:15657–15665

    Article  CAS  Google Scholar 

  • Liu Y, Fang L, Lu H, Li Y, Hu C, Yu H (2012) One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4. Appl Catal B Environ 115:245–252

    Article  CAS  Google Scholar 

  • Mahmoudi MM, Nadali A, Soheil Arezoomand HR, Mahvi AH (2019) Adsorption of cationic dye textile wastewater using clinoptilolite: isotherm and kinetic study. J Text Inst 110(1):74–80

    Article  CAS  Google Scholar 

  • McKay G, Otterburn MS, Aga DA (1985) Fuller’s earth and fired clay as adsorbent for dye stuffs, equilibrium and rate constants. Water Air Soil Pollut 24:307–322

    Article  CAS  Google Scholar 

  • Mittal J, Mittal A (2015) Hen feather, a remarkable adsorbent for dye removal. In: Sharma SK (ed) Chapter 11 of the book “green chemistry for dyes removal from wastewater”. Scrivener Publishing LLC, Beverly, pp 409–857

    Chapter  Google Scholar 

  • Mittal A, Teotia M, Soni RK, Mittal J (2016) Applications of egg shell and egg shell membrane as adsorbents: a review. J Mol Liq 223:376–387

    Article  CAS  Google Scholar 

  • Naraginti S, Yu YY, Fang Z, Yong YC (2019) Novel tetrahedral Ag3PO4@ N-rGO for photocatalytic detoxification of sulfamethoxazole: process optimization, transformation pathways and biotoxicity assessment. Chem Eng J 375:122035

    Article  CAS  Google Scholar 

  • Naseem K, Farooqi ZH, Begum R, Irfan A (2018) Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: a review. J Clean Prod 187:296–307

    Article  CAS  Google Scholar 

  • Oshikiri M, Boero M, Ye J, Zou Z, Kido G (2002) Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J Chem Phys 117(15):7313–7318

    Article  CAS  Google Scholar 

  • Sarma GK, Gupta SS, Bhattacharyya KG (2011) Methylene blue adsorption on natural and modified clays. Sep Sci Technol 46:1602–1614

    Article  CAS  Google Scholar 

  • Simakov SA, Tsur Y (2007) Surface stabilization of nano-sized titanium dioxide: improving the colloidal stability and the sintering morphology. J Nanopart Res 9:403–417

    Article  CAS  Google Scholar 

  • Sleiman M, Vildozo D, Ferronato C, Chovelon JM (2007) Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Appl Catal B Environ 77(1–2):1–11

    Article  CAS  Google Scholar 

  • Tu W, Zhou Y, Zou Z (2013) Versatile grapheme promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion and environmental applications. Adv Funct Mater 23(40):4996–5008

    Article  CAS  Google Scholar 

  • Wang L, Zhou Y (2016) Stable visible-light photocatalyst based on the graphene protected Ag3PO4 nanocomposite. Fuller Nanotub Car N 24(9):588–593

    Article  CAS  Google Scholar 

  • Wang H, Wang Y, Cao X, Feng M, Lan G (2009) Vibrational properties of graphene and graphene layers. J Raman Spectrosc 40:1791–1796

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2011a) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3:3670–3678

    Article  CAS  Google Scholar 

  • Xiang QJ, Yu J, Jaroniec M (2011b) Nitrogen and sulfur Co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13(11):4853–4861

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  Google Scholar 

  • Yang NL, Zhai J, Wang D, Chen YS, Jiang L (2010) Two-dimensional Graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894

    Article  CAS  Google Scholar 

  • Yang X, Qin J, Jiang Y, Chen K, Yan X, Zhang D, Li R, Tang H (2015) Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl Catal B Environ 166:231–240

    Article  CAS  Google Scholar 

  • Yu H, Xu L, Wang P, Wang X, Yu J (2014) Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe (III) cocatalyst. Appl Catal B Environ 144:75–82

    Article  CAS  Google Scholar 

  • Zhang W, Li G, Wang W, Qin Y, An T, Xiao X, Choi W (2018) Enhanced photocatalytic mechanism of Ag3PO4 nano-sheets using MS2 (M= Mo, W)/rGO hybrids as co-catalysts for 4-nitrophenol degradation in water. Appl Catal B Environ 232:11–18

    Article  CAS  Google Scholar 

  • Zhou L, Wang W, Liu S, Zhang L, Xu H, Zhu W (2006) A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J Mol Catal A Chem 252(1–2):120–124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIC, Tezpur University, SAIF, Gauhati University, CIF, IIT Guwahati, Assam, CSIR-CERI, Karaikudi, Tamilnadu, and ACMS, IIT Kanpur, India, for various characterisation of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Al Kausor.

Ethics declarations

Conflict of interest

There authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 524 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausor, M.A., Chakrabortty, D. Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@RGO nanocomposite. J Nanopart Res 22, 93 (2020). https://doi.org/10.1007/s11051-020-04829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04829-3

Keywords

Navigation