Skip to main content

Advertisement

Log in

Nanotechnological solutions for controlling transmission and emergence of antimicrobial-resistant bacteria, future prospects, and challenges: a systematic review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Globally, a high prevalence of multi-drug-resistant (MDR) bacteria, mostly methicillin-resistant Staphylococcus aureus and carbapenem-resistant Enterobacteriaceae, has been reported. Infections caused by such bacteria are expensive and hard to treat due to reduced efficient treatment alternatives. Centered on the current rate of antibiotics production and approvals, it is anticipated that by 2050 up to 10 million people could die annually due to MDR pathogens. To this effect, alternative strategies such as the use of nanotechnology to formulate nanobactericidal agents are being explored. This systematic review addresses the recent approaches, future prospects, and challenges of nanotechnological solutions for controlling transmission and emergence of antibiotic resistance. A comprehensive literature search of PubMed and BioMed Central databases from June 2018 to January 2019 was performed. The search keywords used were “use of nanotechnology to control antibiotic resistance” to extract articles published only in English encompassing all research papers regardless of the year of publication. PubMed and BioMed Central databases literature exploration generated 166 articles of which 49 full-text research articles met the inclusion guidelines. Of the included articles, 44.9%, 30.6%, and 24.5% reported the use of inorganic, hybrid, and organic nanoparticles, respectively, as bactericidal agents or carriers/enhancers of bactericidal agents. Owing to the ever-increasing prevalence of antimicrobial resistance to old and newly synthesized drugs, alternative approaches such as nanotechnology are highly commendable. This is supported by in vitro, ex vivo, and in vivo studies assessed in this review as they reported high bactericide efficacies of organic, inorganic, and hybrid nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MDR:

Multidrug resistant

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-sensitive Staphylococcus aureus

CRE:

Carbapenem-resistant Enterobacteriaceae

AMR:

Antimicrobial resistance

IS:

Insertion sequence

NP:

Nanoparticles

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

PDR:

Pan drug resistant

ANOVA:

Analysis of variance

μg:

Microgram

ml:

Milliliter

TPU:

Thermoplastic polyurethane

DA:

Polydopamine

NS:

Nanosilver

pSWCNT-Ag:

Pegylated silver-coated single-walled carbon nanotubes

SWCNT-Ag:

Silver-coated single-walled carbon nanotubes

PHEMA:

Polyhydroxyethyl methacrylate

BMP-2:

Bone morphogenetic protein 2

PLGA:

Poly-DL-lactic-co-glycolic acid

PAH:

Polyelectrolyte

MNP-CSA-13:

Ceragenin-coated iron oxide magnetic NPs

CSA-13:

Ceragenin 13

ZNG:

Zinc oxide nanorods-graphene nanoplatelets

DMAP-PTA:

Dimethyl amino pyridine propylthioacetate

CdTe:

Cadmium tellurium

TiO2 :

Titanium oxide

MPA:

Mercaptopropionic acid

QD:

Quantum dots

SLN:

Solid lipid nanoparticles

EO:

Essential oil

Cipro:

Ciprofloxacin

CSNP:

Chitosan nanoparticles

mPEG:

Monomethoxy polyethylene glycol

OA:

Oleic acid

PCL:

Poly Ɛ-caprolactone

GO:

Graphene oxide

SMZ:

Sulfamethoxazole

MCP-1:

Monocyte chemoattractant protein-1

IL:

Interleukin

BA:

Bacitracin A

ZIF:

Zeolitic imidazolate framework

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

FETEM:

Field emission transmission electron microscopy

HRTEM:

High-resolution transmission electron microscopy

DLS:

Dynamic light scattering

ATR-FTIR:

Attenuated total reflectance Fourier transform-infrared spectroscopy

FTIR:

Fourier transform-infrared spectroscopy

AFM:

Atomic force microscopy

XRD:

X-ray diffraction

EDX:

Energy dispersive X-ray spectroscopy

DSC:

Differential scanning calorimeter

TGA:

Thermogravimetric analysis

DRS:

UV-visible diffuse reflectance spectroscopy

XPS:

X-ray photoelectron spectroscopy

SOD:

Superoxide dismutase

Mtb:

Mycobacterium tuberculosis

ROS:

Reactive oxygen species

MTT:

(Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

XTT:

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)

CCK:

Cell Counting Kit-8

UV:

Ultraviolet

References

  • Addae et al (2014) Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulfide core/shell nanoparticles to bacterial spores and cells. J Biol Eng 8:11. https://doi.org/10.1186/1754-1611-8-11

    Article  CAS  Google Scholar 

  • Ali SW, Joshi M, Rajendran S (2011) Synthesis and characterization of chitosan nanoparticles with enhanced antimicrobial activity. Int J Nanosci 10(4 & 5):979–984. https://doi.org/10.1142/S0219581X1100868X

    Article  CAS  Google Scholar 

  • Alves TF, Chaud MV, Grotto D, Jozala AF, Pandit R, Rai M, dos Santos CA (2017) Association of silver Nanoparticles and curcumin solid dispersion: antimicrobial and antioxidant properties. AAPS PharmSciTech 19(1):225–231. https://doi.org/10.1208/s12249-017-0832-z

    Article  CAS  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J (2014) Interaction of Al2O3 nanoparticles withEscherichia coli and their cell envelope biomolecules. J Appl Microbiol 116(4):772–783. https://doi.org/10.1111/jam.12423

    Article  CAS  Google Scholar 

  • Anwar A, Khalid S, Perveen S, Ahmed S, Siddiqui R, Khan NA, Shah MR (2018) Synthesis of 4-(dimethylamino) pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity. Nanobiotechnol 16:6. https://doi.org/10.1186/s12951-017-0332-z

    Article  CAS  Google Scholar 

  • Asadishad B, Hidalgo G, Tufenkji N (2012) Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic Escherichia coli strain CFT073. FEMS Microbiol Lett 334:87–94

    CAS  Google Scholar 

  • Asgarali A, Stubbs KA, Oliver A, Vocadlo DJ, Mark BL (2009) Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:2274–2282

    CAS  Google Scholar 

  • Bansod SD, Bawaskar MS, Gade AK, Rai MK (2015) Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnol 9(4):165–171. https://doi.org/10.1049/iet-nbt.2014.0042

    Article  Google Scholar 

  • Billal DS, Feng J, Leprohon P, Legare D, Ouellette M (2011) Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 12:512

    CAS  Google Scholar 

  • Brody T, Yavatkar AS, Lin Y, Ross J, Kuzin A et al (2008) Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria. PLoS One 3(8):e3074. https://doi.org/10.1371/journal.pone.0003074

    Article  CAS  Google Scholar 

  • Burygin G, Khlebtsov B, Shantrokha A, Dykman L, Bogatyrev V, Khlebtsov N et al (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801. https://doi.org/10.1007/s11671-009-9316-8

    Article  CAS  Google Scholar 

  • Castro L, Blázquez ML, González FG, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:199–216

    Google Scholar 

  • CDC (2013) Antibiotic resistance threats in the United States

  • Centre for Disease Dynamics, Economics and Policy (CDDEP) (2015) The state of the world’s antibiotics. Washington DC-New Delhi

  • Ceri H, Olson ME, Stremick C (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    CAS  Google Scholar 

  • Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Nat Sci Rep 6:26717. https://doi.org/10.1038/srep26717

    Article  CAS  Google Scholar 

  • Chatterjee et al (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34. https://doi.org/10.1186/1477-3155-9-34

    Article  CAS  Google Scholar 

  • Chemello G, Piccinetti C, Randazzo B, Carnevali O, Maradonna F, Magro M, Olivotto I (2016) Oxytetracycline delivery in adult female zebrafish by iron oxide nanoparticles. Zebrafish 13(6):495–503. https://doi.org/10.1089/zeb.2016.1302

    Article  CAS  Google Scholar 

  • Cheng et al (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16:7. https://doi.org/10.1186/1423-0127-16-7

    Article  CAS  Google Scholar 

  • Choi SJ, Oh JM, Choy JH (2010) Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J Nanosci Nanotechnol 10:2913–2916

    CAS  Google Scholar 

  • Choksakulnimitr S, Masuda S, Tokuda H, Takakura Y, Hashida M (1995) In vitro cytotoxicity of macromolecules in different cell culture systems. J Control Release 34:233–241

    CAS  Google Scholar 

  • Colonna C, Conti B, Perugini P, Pavanetto F, Modena T (2007) Chitosan glutamate nanoparticles for protein delivery: development and effect on prolidase stability. J Microencapsul 24:553–564

    CAS  Google Scholar 

  • Cui L, Chen P, Chen S, Yuan Z, Yu C, Ren B, Zhang K (2013) In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem 85:5436–5443

    CAS  Google Scholar 

  • Da Silva Gündel S, de Souza ME, Quatrin PM, Klein B, Wagner R, Gündel A, Ourique AF (2018) Nanoemulsions containing Cymbopogon flexuosus essential oil: development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb Pathog 118:268–276. https://doi.org/10.1016/j.micpath.2018.03.043

    Article  CAS  Google Scholar 

  • de la Fuente JM, Grazu V (2012) Nanobiotechnology, inorganic nanoparticles vs organic nanoparticles. Frontiers of nanoscience, vol 4. Elsevier Ltd

  • Devalapally H, Chakilam A, Amiji MM (2007) Role of nanotechnology in pharmaceutical product development. J Pharm Sci 96:2547–2565. https://doi.org/10.1002/jps

    Article  CAS  Google Scholar 

  • Economou V, Gousia P (2015) Agriculture and food animals as a source of antimicrobial-resistant bacteria. NCBI, Dove Medicine Press. Infect Drug Resist 8:49–61

    CAS  Google Scholar 

  • Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22(29):295102. https://doi.org/10.1088/0957-4484/22/29/295102

    Article  CAS  Google Scholar 

  • Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S (2018) Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol 66(6):506–513. https://doi.org/10.1111/lam.12886

    Article  CAS  Google Scholar 

  • Gao W et al (2010) Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 6:e1000944

    Google Scholar 

  • Gao W, Chen Y, Chang Y, Zhang Y, Chang Q, Zhang L (2018) Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 127:46–57. https://doi.org/10.1016/j.addr.2017.09.015

    Article  CAS  Google Scholar 

  • Gholap H, Patil R, Yadav P, Banpurkar A, Ogale S, Gade W (2013) CdTe–TiO2nanocomposite: an impeder of bacterial growth and biofilm. Nanotechnology 24(19):195101. https://doi.org/10.1088/0957-4484/24/19/195101

    Article  CAS  Google Scholar 

  • Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42. https://doi.org/10.3389/fgene.2015.00042

    Article  CAS  Google Scholar 

  • Gulmez D, Woodford N, Palepou MF, Mushtaq S, Metan G, Yakupogullari Y, Kocagoz S, Uzun O, Hascelik G.& Livermore DM. (2008) Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int J Antimicrob Agents 31:523–526

    Google Scholar 

  • Guzmán MG, Dille J, Godet S (2009) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2:104–111

    Google Scholar 

  • Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol in Vitro 18:703–710

    CAS  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65(8):3710–3713

    CAS  Google Scholar 

  • He et al (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Nanobiotechnol 14:54. https://doi.org/10.1186/s12951-016-0202-0

    Article  CAS  Google Scholar 

  • Hinchliffe P, Symmons MF, Hughes C, Koronakis V (2013) Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 67:221–242

    CAS  Google Scholar 

  • Hofmann D, Messerschmidt C, Bannwarth MB, Landfester K, Mailander V (2014) Drug delivery without nanoparticle uptake: delivery by a kiss-andrun mechanism on the cell membrane. Chem Commun (Camb) 50:1369–1371

    CAS  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Google Scholar 

  • Hong W, Liu L, Zhao Y, Liu Y, Zhang D, Liu M (2018) Pluronic-based nano-self-assemblies of bacitracin a with a new mechanism of action for an efcient in vivo therapeutic effect against bacterial peritonitis. J Nanobiotechnol 16:66. https://doi.org/10.1186/s12951-018-0397-3

    Article  CAS  Google Scholar 

  • Hou Y, Hu J, Park H, Lee M (2012) Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications. J Biomed Mater Res A 100:939–947

    Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta A Mol Biomol Spectrosc 130:295–301

    CAS  Google Scholar 

  • Islam et al (2017) A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement Altern Med 17:276. https://doi.org/10.1186/s12906-017-1791-3

    Article  CAS  Google Scholar 

  • Ivask A, El Badawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z et al (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386

    CAS  Google Scholar 

  • Iyamba J-ML, Wambale JM, Lukukula CM, Takaisi-Kikuni NB (2014) High prevalence of methicillin resistant staphylococci strains isolated from surgical site infections in Kinshasa. Pan Afr Med J 18:322. https://doi.org/10.11604/pamj.2014.18.322.4440

    Article  Google Scholar 

  • Jafari A, Jafari Nodooshan S, Safarkar R, Movahedzadeh F, Mosavari N, Novin Kashani A, Majidpour A (2017) Toxicity effects of AgZnO nanoparticles and rifampicin on mycobacterium tuberculosis into the macrophage. J Basic Microbiol 58(1):41–51. https://doi.org/10.1002/jobm.201700289

    Article  CAS  Google Scholar 

  • Jahnke JP, Cornejo JA, Sumner JJ, Schuler AJ, Atanassov P, Ista LK (2016) Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: the case of Shewanella oneidensis MR-1. Biointerphases. 11:11003

    Google Scholar 

  • Kawata K, Osawa M, OkabeS (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    CAS  Google Scholar 

  • Khan M, Khan M, Adil SF, Tahir MN, Tremel W, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH (2013) Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomedicine 8:1507–1516

    Google Scholar 

  • Khan ST, Ahmad J, Ahamed M, Musarrat J, Al-Khedhairy AA (2016) Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. J Biol Inorg Chem 21(3):295–303. https://doi.org/10.1007/s00775-016-1339-x

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Kierys A (2014) Synthesis of aspirin-loaded polymer-silica composites and their release characteristics. ACS Appl Mater Interfaces 6(16):14369–14376

    CAS  Google Scholar 

  • Kose N, Otuzbir A, Peksen C, Kiremitc A, Dogan A (2013) A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin Orthop Relat Res 471:2532–2539. https://doi.org/10.1007/s11999-013-2894-x

    Article  Google Scholar 

  • Kvitek A, Panacek J, Soukupova M, Kolar R, Vecerova R, Prucek M, Holecova R (2008) ZborilEffect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) J. Phys Chem C 112:5825–5834

    CAS  Google Scholar 

  • Lai XZ, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, Epand RF, Epand RM, Savage PB (2008) Ceragenins: cholic acidbased mimics of antimicrobial peptides. Acc Chem Res 41(10):1233–1240

    CAS  Google Scholar 

  • Lai H-Z, Chen W-Y, Wu C-Y, Chen Y-C (2015) Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl Mater Interfaces 7:2046–2054

    CAS  Google Scholar 

  • Lavigne JP, Sotto A, Nicolas-Chanoine MH, Bouziges N, Pagès JM, Davin-Regli A (2013) An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int J Antimicrob Agents 41:130–136

    CAS  Google Scholar 

  • Levison ME, Levison JH (2009 December) Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin N Am 23(4):791–vii. https://doi.org/10.1016/j.idc.2009.06.008

    Article  Google Scholar 

  • Li B, Jiang B, Boyce BM, Lindsey BA (2009) Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials 30(13):2552–2558. https://doi.org/10.1016/j.biomaterials.2009.01.042

    Article  CAS  Google Scholar 

  • Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Rao KMK (2010) Evaluation of local MCP-1 and IL-12 nanocoatings for infectionprevention in open fractures. J Orthop Res 28(1). https://doi.org/10.1002/jor.20939

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    CAS  Google Scholar 

  • Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM (2012) Structure and function of OprD protein in PseudoImonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol 302:63–68

    CAS  Google Scholar 

  • Liu et al (2018) Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol 16:89. https://doi.org/10.1186/s12951-018-0416-4

    Article  CAS  Google Scholar 

  • Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N (2011) What remains against carbapenem resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofoxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37:415–424

    CAS  Google Scholar 

  • Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505

    CAS  Google Scholar 

  • Loomba PS, Taneja J, Mishra B (2010) Methicillin and vancomycin resistant S. aureus in hospitalized patients. J Global Infect Dis 2(3):275–283. https://doi.org/10.4103/0974-777X.68535

    Article  Google Scholar 

  • Louie A, VanScoy BD et al (2012) Impact of spores on the comparative efficacies of five antibiotics for treatment of Bacillus anthracis in an in vitro hollow fiber pharmacodynamics model. Antimicrob Agents Chemother 56:1229–1239

    CAS  Google Scholar 

  • Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265–1273. https://doi.org/10.1172/JCI200318535

    Article  CAS  Google Scholar 

  • Lu Z, Rong K, Li J, Yang H, Chen R (2013) Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med 24:1465–1471

    CAS  Google Scholar 

  • Luo Y, Hossain M, Wang C, Qiao Y, An J, Ma L, Su M (2013) Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale 5(2):687–694. https://doi.org/10.1039/c2nr33154c

    Article  CAS  Google Scholar 

  • Marei N, Elwahy AHM, Salah TA, El-Sherif Y, El-Samie EA (2018) Enhanced antibacterial activity of Egyptian local insects’ chitosanbased nanoparticles loaded with ciprofloxacin-HCl. Int J Biol Macromol 126:262–272. https://doi.org/10.1016/j.ijbiomac.2018.12.204

    Article  CAS  Google Scholar 

  • Markova Z, Šiškova K, Filip J et al (2012) Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem 14:2550–2558. https://doi.org/10.1039/C2GC35545K

    Article  CAS  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248

    Google Scholar 

  • McKenzie C (2011) Antibiotic dosing in critical illness. J Antimicrob Chemother 66(Suppl 2):ii25–ii31. https://doi.org/10.1093/jac/dkq516

    Article  CAS  Google Scholar 

  • McQuillan JS, Shaw AM (2014) Differential gene regulation in the Ag nanoparticle and Ag+-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology. 8:177–184

    CAS  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299

    CAS  Google Scholar 

  • Michalikova L, Hnilicova S. and Brnova J (2017) Nanoshield surface coating protection combination with cleaning product cleaner for removal bacterial contamination. Abstracts from the 4th International Conference on Prevention & Infection Control (ICPIC 2017). Geneva, Switzerland. 20–23 June 2017 Antimicrobial Resistance and Infection Control, 6(Suppl 3):P390. https://doi.org/10.1186/s13756-017-0201-4

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    CAS  Google Scholar 

  • Nair LS, Laurencin CT (2008) Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Jt Surg Am 90:128–131

    Google Scholar 

  • Naz et al (2013) Enhanced biocidal activity of Au nanoparticles synthesized in one pot using 2, 4-dihydroxybenzene carbodithioic acid as a reducing and stabilizing agent. J Nanobiotechnol 11:13. https://doi.org/10.1186/1477-3155-11-13

    Article  CAS  Google Scholar 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064–1073

    CAS  Google Scholar 

  • Niemirowicz et al (2015) Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnol 13:32. https://doi.org/10.1186/s12951-015-0093-5

    Article  CAS  Google Scholar 

  • Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19:588–595

    CAS  Google Scholar 

  • Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18(5):263–272

    CAS  Google Scholar 

  • Novais  et al (2012) Spread of an OmpK36-modified ST15 Klebsiella pneumoniae variant during an outbreak involving multiple carbapenem-resistant Enterobacteriaceae species and clones. Eur J Clin Microbiol Infect Dis 31:3057–3063

    CAS  Google Scholar 

  • Omolo CA, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Ndesendo VMK, Govender T (2017) Pegylated oleic acid: a promising amphiphilic polymer for nano-antibiotic delivery. Eur J Pharm Biopharm 112:96–108. https://doi.org/10.1016/j.ejpb.2016.11.022

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci Technol Adv Mater 9:35004

    Google Scholar 

  • Palanisamy et al (2014) Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnol 12:2. https://doi.org/10.1186/1477-3155-12-2

    Article  CAS  Google Scholar 

  • Panáček A, Smékalová M, Kilianová M, Prucek R, Bogdanová K, Večeřová R, Kolář M, Havrdová M, Płaza GA, Chojniak J, Zbořil R, Kvítek L (2015) Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. 21(1):E26

    Google Scholar 

  • Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R (2017) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71. https://doi.org/10.1038/s41565-017-0013-y

    Article  CAS  Google Scholar 

  • Park et al (2018) Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium. J Nanobiotechnol 16:31. https://doi.org/10.1186/s12951-018-0355-0

    Article  CAS  Google Scholar 

  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother 51:3471–3484

    CAS  Google Scholar 

  • Pérez-Díaz MA, Boegli L, James G, Velasquillo C, Sánchez-Sánchez R, Martínez-Martínez R-E, Martínez-Castañón GA, Martinez-Gutierrez F (2015) Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C 55:360–366

    Google Scholar 

  • Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D et al (2012) Emergence of OXA-48 type carbapenemase producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 56:2125–2128

    CAS  Google Scholar 

  • Pini A, Giuliani A, Falciani C et al (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49(7):2665–2672

    CAS  Google Scholar 

  • Poirel L, Nordmann P (2006) Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother 50:1442–1448

    CAS  Google Scholar 

  • Power E, Schering–Plough Corporation, Global Medical Affairs, Kenilworth, NJ, USA (2006) Impact of antibiotic restrictions: the pharmaceutical perspective. Clin Microbiol Infect 12(Suppl. 5):25–34

    Google Scholar 

  • Punina NV, Makridakis NM, Remnev MA, Topunov AF (2015) Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 9:19. https://doi.org/10.1186/s40246-015-0037-z

    Article  CAS  Google Scholar 

  • Queenan AM, Bush K (2007) Carbapenemases: the versatile lactamases. Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, New Jersey 08869 American Society for Microbiology 20(23):440–458

  • Rafińska K, Pomastowski P, Buszewski B (2019) Study of Bacillus subtilis response to different forms of silver. Sci Total Environ 661:120–129. https://doi.org/10.1016/j.scitotenv.2018.12.139

    Article  CAS  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976

    CAS  Google Scholar 

  • Raman G, Park SJ, Sakthivel N, Suresh AK (2017) Physico-cultural parameters during AgNPs biotransformation with bactericidal activity against human pathogens. Enzym Microb Technol 100:45–51. https://doi.org/10.1016/j.enzmictec.2017.02.002

    Article  CAS  Google Scholar 

  • Reithofer MR, Lakshmanan A, Ping ATK, Chin JM, Hauser CAE (2014) In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties. Biomaterials 35(26):7535–7542. https://doi.org/10.1016/j.biomaterials.2014.04.102

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    CAS  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43(5):1501–1518. https://doi.org/10.1039/c3cs60218d

    Article  CAS  Google Scholar 

  • Ruggerone P, Murakami S, Pos KM, Vargiu AV (2013) RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem 13:3079–3100

    CAS  Google Scholar 

  • Sadurní N, Solans C, Azemar N, García-Celma MJ (2005) Studies on the formation of O / W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci 26:438–445. https://doi.org/10.1016/j.ejps.2005.08.001

    Article  CAS  Google Scholar 

  • Salehi et al (2014) Investigation of antibacterial effect of cadmium oxide nanoparticles on Staphylococcus aureus bacteria. J Nanobiotechnol 12:26. https://doi.org/10.1186/s12951-014-0026-8

    Article  CAS  Google Scholar 

  • Saude A, Ombredani A, Silva O, Barbosa J, Moreno S, Dias S, Franco OL (2014) Clavanin bacterial sepsis control using a novel methacrylate nanocarrier. Int J Nanomed 5055. https://doi.org/10.2147/ijn.s66300

  • Seil JT, Webster TJ (2012) Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnology 23(49):495101. https://doi.org/10.1088/0957-4484/23/49/495101

    Article  CAS  Google Scholar 

  • Selvaraj RCA, Rajendran M, Nagaiah HP (2019) Re-potentiation ofβ-lactam antibiotic by synergistic combination with biogenic copper oxide nanocubes against biofilm forming multidrug-resistant bacteria. Molecules 2019(24):3055. https://doi.org/10.3390/molecules24173055

    Article  CAS  Google Scholar 

  • Senarathna ULNH, Fernando SSN, Gunasekara TDCP, Weerasekera MM, Hewageegana HGSP, Arachchi NDH, Siriwardena HD, Jayaweera PM (2017) Enhanced antibacterial activity of TiO2 nanoparticle surface modified with Garcinia zeylanica extract. Chem Cent J 11:7. https://doi.org/10.1186/s13065-017-0236-x

    Article  CAS  Google Scholar 

  • Shaaban MI, Shaker MA, Mady FM (2017) Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnol 15:29. https://doi.org/10.1186/s12951-017-0262-9

    Article  CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 3:168–171

    CAS  Google Scholar 

  • Silver S, Phoung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 2005(32):587–605

    Google Scholar 

  • Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C et al (2009) Size-, composition- and shape-dependent toxicological of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    CAS  Google Scholar 

  • Singh et al (2014) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol 12:40. https://doi.org/10.1186/s12951-014-0040-x

    Article  CAS  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  • Sowmya C, Lavakumar V, Venkateshan N, Ravichandiran V, Saigopal DVR (2018) Exploration of Phyllanthus acidus mediated silver nanoparticles and its activity against infectious bacterial pathogen. Chem Cent J 12:42. https://doi.org/10.1186/s13065-018-0412-7

    Article  CAS  Google Scholar 

  • Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr (2004) Trends in antimicrobial drug development: implications for the future. Infect Dis Ther 38:1279–1286

    CAS  Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

    CAS  Google Scholar 

  • Ssekatawa K, Byarugaba DK, Wampande E, Ejobi F (2018) A systematic review: the current status of carbapenem resistance in East Africa. BMC Res Notes 11:1–9. https://doi.org/10.1186/s13104-018-3738-2

    Article  CAS  Google Scholar 

  • Stapleton PD, Taylor PW (2002) Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Europe PMC Funders Group Author Manuscript. 85:57–72

  • Su H-L, Lin S-H, Wei J-C, Pao I-C, Chiao S-H et al (2011) Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS One 6(6):e21125. https://doi.org/10.1371/journal.pone.0021125

    Article  CAS  Google Scholar 

  • Tahir MN, Natalio F, Cambaz MA, Panthöfer M, Branscheid R, Kolb U, Tremel W (2013) Controlled synthesis of linear and branched Au@ ZnO hybrid nanocrystals and their photocatalytic properties. Nanoscale 5:9944–9949

    CAS  Google Scholar 

  • Tajkarimi M, Rhinehardt K, Thomas M, Ewunkem AJ, Campbell A, Boyd S, Turner D, Harrison SH, Graves JL (2017) Selection for ionic- confers silver nanoparticle resistance in Escherichia coli. JSM Nanotechnol Nanomed 5:1047

    Google Scholar 

  • Tangden T, Adler M, Cars O, Sandegren L, Lowdin E (2013) Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. J Antimicrob Chemother 68:1319–1326

    Google Scholar 

  • Taylor E, Webster TJ (2011) Reducing infections through nanotechnology and nanoparticles. Int J Nanomedicine 6:1463–1473

    CAS  Google Scholar 

  • Thati V, Shivannavar CT, Gaddad SM (2011) Vancomycin resistance among methicillin resistant Staphylococcus aureusisolates from intensive care units of tertiary care hospitals in Hyderabad. Indian J Med Res 134(5):704–708. https://doi.org/10.4103/0971-5916.91001

    Article  CAS  Google Scholar 

  • Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 10:1429–1435

    CAS  Google Scholar 

  • Umashankari et al (2012) Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Saline Syst 8:11. https://doi.org/10.1186/2046-9063-8-11

    Article  CAS  Google Scholar 

  • Warnes SL, Highmore CJ, Keevil CW (2012) Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: implications for public health. American Society for Microbiology 3:6–12

    Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    CAS  Google Scholar 

  • Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q (2018) Nanostructured surface topographies have an effect on bactericidal activity. J Nanobiotechnol 16:20. https://doi.org/10.1186/s12951-018-0347-0

    Article  CAS  Google Scholar 

  • Xu T, Zhang J, Zhu Y, Zhao W, Pan C, Ma H, Zhang L (2018) A poly (hydroxyethyl methacrylate)–Ag nanoparticle porous hydrogel for simultaneous in vivo prevention of the foreign-body reaction and bacterial infection. Nanotechnology 29(39):395101. https://doi.org/10.1088/1361-6528/aad257

    Article  CAS  Google Scholar 

  • Yao C, Webster TJ, Hedrick M (2013) Decreased bacteria density on nanostructured polyurethane. J Biomed Mater Res A 102(6):1823–1828. https://doi.org/10.1002/jbm.a.34856

    Article  CAS  Google Scholar 

  • Yuan Y, Zhang Y (2017) Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays. Nanomedicine 13(7):2199–2207. https://doi.org/10.1016/j.nano.2017.06.003

    Article  CAS  Google Scholar 

  • Zanni E, Bruni E, Chandraiahgari CR, de Bellis G, Santangelo MG, Leone M, Bregnocchi A, Mancini P, Sarto MS, Uccelletti D (2017) Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches. J Nanobiotechnol 15:57. https://doi.org/10.1186/s12951-017-0291-4

    Article  CAS  Google Scholar 

  • Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91(1):470–480

    Google Scholar 

  • Zhenga Z, Yin W, Zarad JN, Lib W et al (2010) The use of BMP-2 coupled – Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 31(35):9293–9300. https://doi.org/10.1016/j.biomaterials.2010.08.041

    Article  CAS  Google Scholar 

  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10:19 http://www.biomedcentral.com/10/1/19

    CAS  Google Scholar 

  • Zou W, Li X, Lai Z, Zhang X, Hu X, Zhou Q (2016) Graphene oxide inhibits antibiotic uptake and antibiotic resistance gene propagation. ACS Appl Mater Interfaces 8(48):33165–33174. https://doi.org/10.1021/acsami.6b09981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to MAPRONANO ACE for funding this work.

Availability of data and materials

All relevant data has been submitted with the manuscript and therefore no supplementary data.

Funding

The authors declare that this systematic review was funded by Africa Centre of Excellence in Materials, Product Development and Nanotechnology, MAPRONANOACE Makerere University. This study was also funded in part by the Swedish International Development Cooperation Agency (Sida) and Makerere University under Sida Contribution No: 51180060. The grant is part of the European and Developing Countries Clinical Trials Partnership (EDCTP2) program supported by the European Union.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. Eddie Wampande (EW), Lubwama Michael (LM), Kirabira John Baptist (KJB), Dennis K Byarugaba (DKB), Robert Tweyongyere (RB), and Francis Ejobi (FB) conceptualized and designed the format for this systematic review. Kenneth Ssekatawa (KS), Charles Kato Drago (CKD), and EW performed the literature search and data analysis. All authors drafted the section of literature review. KS, EW, LM, KJB, and CKD wrote the first draft of the manuscript and managed manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eddie M. Wampande.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Guest Editors: Mamadou Diallo, Abdessattar Abdelkefi, and Bhekie Mamba

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology Convergence in Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ssekatawa, K., Byarugaba, D.K., Kato, C.D. et al. Nanotechnological solutions for controlling transmission and emergence of antimicrobial-resistant bacteria, future prospects, and challenges: a systematic review. J Nanopart Res 22, 117 (2020). https://doi.org/10.1007/s11051-020-04817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04817-7

Keywords

Navigation