Skip to main content

Advertisement

Log in

The synthesis of graphene-TiO2/g-C3N4 super-thin heterojunctions with enhanced visible-light photocatalytic activities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, an efficient strategy for the synthesis of graphene nanobelt-titanium dioxide/graphitic carbon nitride (graphene-TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. Furthermore, the as-prepared graphene-TiO2/g-C3N4 heterostructure can show enhanced photocatalytic activity under visible-light irradiation. These outstanding performances of photocatalytic activities for graphene-TiO2/g-C3N4 composites can be attributed to the heterojunction interfaces which can separate the electron-hole pairs and impede the recombination of electrons and holes more efficiently. This study conclusively demonstrates a facile and environmentally friendly new strategy to design highly efficient graphene-TiO2/g-C3N4 heterostructure photocatalytic materials for potential applications under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2009) Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 47(14):3280–3287

    Article  CAS  Google Scholar 

  • And YC, Choi W, Lee CH, Taeghwan Hyeon A, Lee HI (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35(5):966–970

    Article  Google Scholar 

  • Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38(1):115–164

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  Google Scholar 

  • Cai L, Cho IS, Logar M, Mehta A, He J, Lee CH, Rao PM, Feng Y, Wilcox J, Prinz FB (2014) Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. Phys Chem Chem Phys 16(24):12299–12306

    Article  CAS  Google Scholar 

  • Cai J, Wang Y, Zhu Y, Wu M, Zhang H, Li X, Jiang Z, Meng M (2015) In situ formation of disorder-engineered tio2(b)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 7(45):24987–24992

    Article  CAS  Google Scholar 

  • Cao S, Yu J (2013) G-c3n4-based photocatalysts for hydrogen generation. J Phys Chem Lett 4(5):2101–2107

    Google Scholar 

  • Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176

    Article  CAS  Google Scholar 

  • Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  Google Scholar 

  • Gao ZD, Qu YF, Zhou X, Wang L, Song YY, Schmuki P (2016) Pt-decorated g-c3n4/TiO2 nanotube arrays with enhanced visible-light photocatalytic activity for H2 evolution. Chemistryopen 5(3):197–200

    Article  CAS  Google Scholar 

  • Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Cheminform abstract: photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  CAS  Google Scholar 

  • Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  • Hirsch A (2009) Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Angew Chem Int Ed 48(36):6594–6596

    Article  CAS  Google Scholar 

  • Jiang Z, Zhu C, Wan W, Qian K, Xie J (2015) Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J Mater Chem A 4(5):1806–1818

    Article  Google Scholar 

  • Kai L, Gao S, Wang Q, Hui X, Wang Z, Huang B, Ying D, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-c3n4 heterojunctions with high photocatalytic performance under led light irradiation. ACS Appl Mater Interfaces 7(17):9023–9030

    Article  Google Scholar 

  • Kim DW, Kim YH, Jeong HS, Jung HT (2011) Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat Nanotechnol 7(1):29–34

    Article  Google Scholar 

  • Kleinfeld E, Ton-That T (2013) Novel visible light active graphitic c3n4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B Environ 142–143(5):718–728

    Google Scholar 

  • Li XF, Wang LL, Chen KQ, Luo Y (2011) Design of graphene-nanoribbon heterojunctions from first principles. J Phys Chem C 115(25):12616–12624

    Article  CAS  Google Scholar 

  • Li Q, Zhang N, Yang Y, Wang G, Ng DH (2014) High efficiency photocatalysis for pollutant degradation with mos2/c3n4 heterostructures. Langmuir the Acs Journal of Surfaces & Colloids 30(29):8965–8972

    Article  CAS  Google Scholar 

  • Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling tionanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20(23):4175–4181

    Article  CAS  Google Scholar 

  • Liu G, Yin LC, Wang J, Niu P, Zhen C, Xie Y, Cheng HM (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5(11):9603–9610

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Cheminform 46(23):970–974

    Google Scholar 

  • Lu YH, Wu RQ, Shen L, Yang M, Sha ZD, Cai YQ, He PM, Feng YP (2009) Effects of edge passivation by hydrogen on electronic structure of armchair graphene nanoribbon and band gap engineering. Appl Phys Lett 94(12):491

    Article  Google Scholar 

  • Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2d transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28(10):1917–1933

    Article  CAS  Google Scholar 

  • Manga KK, Zhou Y, Yan Y, Loh KP (2010) Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv Funct Mater 19(22):3638–3643

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125(33):331–349

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  Google Scholar 

  • Shah MSAS, Park AR, Zhang K, Park JH, Yoo PJ (2012) Green synthesis of biphasic TiO2-reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl Mater Interfaces 4(8):3893–3901

    Article  Google Scholar 

  • Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of tio2 with a reduced bandgap. Nat Chem 3(4):296–300

    Article  CAS  Google Scholar 

  • Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23(40):4996–5008

    Article  CAS  Google Scholar 

  • Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven z-scheme bi12geo20/g-c3n4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of cr(vi) reduction. Appl Catal B Environ 207:17–26

    Article  CAS  Google Scholar 

  • Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible|[nbsp]|light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  • Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606

    Article  Google Scholar 

  • Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) In situ microwave-assisted synthesis of porous n-TiO2/g-c3n4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140–17150

    Article  CAS  Google Scholar 

  • Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Cheminform 43(15):5234–5244

    CAS  Google Scholar 

  • Wang S, Pan L, Song JJ, Mi W, Zou JJ, Wang L, Zhang X (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983

    Article  CAS  Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. Uv-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491

    Article  CAS  Google Scholar 

  • Wu JM, Zhang TW, Zeng YW, Hayakawa S, Tsuru K, Osaka A (2005) Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir the Acs Journal of Surfaces & Colloids 21(15):6995–7002

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/c3n4 composites. J Phys Chem C 115(15):7355–7363

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of mos2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134(15):6575–6578

    Article  CAS  Google Scholar 

  • Xie Y, Heo SH, Yoo SH, Ali G, Cho SO (2010) Synthesis and photocatalytic activity of anatase TiO2 nanoparticles-coated carbon nanotubes. Nanoscale Res Lett 5(3):603–607

    Article  CAS  Google Scholar 

  • Xing M, Fang W, Yang X, Tian B, Zhang J (2014) Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chem Commun 50(50):6637–6640

    Article  CAS  Google Scholar 

  • Xu M, Han L, Dong S (2013) Facile fabrication of highly efficient g-c3n4/ag2o heterostructured photocatalysts with enhanced visible-light photocatalytic activity. Appl Mater Interfaces 5(23):12533–12540

    Article  CAS  Google Scholar 

  • Xu S, Hu Y, Zheng M, Wei C (2016) Solvent-free in situ synthesis of g-c3n4/{0 0 1}TiO2 composite with enhanced uv- and visible-light photocatalytic activity for no oxidation. Appl Catal B Environ 182(5):587–597

    Google Scholar 

  • Xue J, Ma S, Zhou Y, Wang Q (2015) Au-loaded porous graphitic c3n4/graphene layered composite as a ternary plasmonic photocatalyst and its visible-light photocatalytic performance. RSC Adv 5(107):88249–88257

    Article  CAS  Google Scholar 

  • Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-c3n4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  Google Scholar 

  • Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC, Ding L, Ge WK, Wong PK (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289(2):186–196

    Article  CAS  Google Scholar 

  • Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842

    Article  CAS  Google Scholar 

  • Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386

    Article  CAS  Google Scholar 

  • Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813

    Article  CAS  Google Scholar 

  • Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26(5):805–809

    Article  CAS  Google Scholar 

  • Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with ni2o3/tio(2-x)bx under visible irradiation. J Am Chem Soc 126(15):4782–4783

    Article  CAS  Google Scholar 

  • Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5(5):6717–6731

    Article  CAS  Google Scholar 

  • Zheng Y, Lin L, Ye X, Guo F, Wang X (2014) Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew Chem Int Ed 53(44):11926–11930

    Article  CAS  Google Scholar 

  • Zhou W, Hong L, Wang J, Liu D, Du G, Cui J (2010) Ag2o/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces 2(8):2385–2392

    Article  CAS  Google Scholar 

  • Zhu YP, Ren TZ, Yuan ZY (2015) Mesoporous phosphorus-doped g-c3n4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7(30):16850–16856

    Article  CAS  Google Scholar 

  • Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X, Dong H (2016) Construction of high-dispersed ag/fe3o4/g-c3n4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B Environ 182:115–122

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 21671133, 21271010, 21604051, 21507081), the Shanghai Municipal Education Commission (no. 15ZZ088, no.15SG49), Technology Commission of Shanghai Municipality (18020500800), and International Joint Laboratory on Resource Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Zhu, Qunjie Xu or Yulin Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Jiang, Z., Zhu, S. et al. The synthesis of graphene-TiO2/g-C3N4 super-thin heterojunctions with enhanced visible-light photocatalytic activities. J Nanopart Res 20, 310 (2018). https://doi.org/10.1007/s11051-018-4399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4399-8

Keywords

Navigation