Skip to main content
Log in

Continual model of magnetic dynamics for antiferromagnetic particles in analyzing size effects on Morin transition in hematite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afanas’ev AM, Chuev MA (1995) Discrete forms of Mössbauer spectra. JETP 80(3):560–567

    Google Scholar 

  • Bødker F, Hansen MF, Koch CB, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev B 61(10):6826–6838

    Article  Google Scholar 

  • Bordonali L et al (2012) 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles. Phys Rev B 85(7):174426

    Article  Google Scholar 

  • Chuev MA (2011) Multi-level relaxation model for describing the Mössbauer spectra of single-domain particles in the presence of quadrupolar hyperfine interaction. J Phys Condens Matter 23(11):426003

    Article  Google Scholar 

  • Chuev MA (2012) On the thermodynamics of antiferromagnetic nanoparticles by example of Mössbauer spectroscopy. JETP Lett 95(6):295–301

    Article  Google Scholar 

  • Chuev MA (2014) Macroscopic quantum effects observed in Mössbauer spectra of antiferromagnetic nanoparticles. Hyperfine Interact 226:111–122

    Article  Google Scholar 

  • Chuev MA (2016) Nutations of magnetization of sublattices and their role in the formation of Mössbauer spectra of antiferromagnetic nanoparticles. JETP Lett 103(3):175–180

    Article  Google Scholar 

  • Chuev MA (2017) Excitation spectrum of the Néel ensemble of antiferromagnetic nanoparticles as revealed in Mössbauer spectroscopy. Adv Condens Matter Phys 2017(15):6209206

    Google Scholar 

  • Chuev MA, Hesse J (2009) Non-equilibrium magnetism of single-domain particles for characterization of magnetic nanomaterials. In: Tamayo KB (ed) Magnetic properties of solids. Nova Science, New York, pp 1–104

    Google Scholar 

  • Chuev MA, Mishchenko IN, Kubrin SP, Lastovina TA (2017) Novel insight into the effect of disappearance of the Morin transition in hematite nanoparticles. JETP Lett 105(11):700–705

    Article  Google Scholar 

  • Dzyaloshinskii IE (1957) Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov Phys JETP 5:1259–1272

    Google Scholar 

  • Jones DH, Srivastava KKP (1986) Many-state relaxation model for the Mössbauer spectra of superparamagnets. Phys Rev B 34(11):7542–7548

    Article  Google Scholar 

  • Kündig W, Bömmel H, Constabaris G, Lindquist RH (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys Rev 142(2):327–333

    Article  Google Scholar 

  • Mischenko I, Chuev M (2016) Quantum-mechanical and continual models of magnetic dynamics for antiferromagnetic particles in Mössbauer spectra analysis. Hyperfine Interact 237(21):1–11

    Google Scholar 

  • Mischenko I, Chuev M, Cherepanov V, Polikarpov M (2014) Antiferromagnetic fluctuations in CePdSn Kondo compound from Mössbauer spectroscopy. Hyperfine Interact 226:299–308

    Article  Google Scholar 

  • Morin FJ (1950) Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys Rev 78:819–820

    Article  Google Scholar 

  • Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120(1):91–98

    Article  Google Scholar 

  • Özdemir Ö, Dunlop DJ, Berquó TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochem Geophys Geosyst 9(10):1–12

    Article  Google Scholar 

  • Rancourt DG (1989) Accurate site populations from Mössbauer spectroscopy. Nucl Instr Meth Phys Res B 44:199–210

    Article  Google Scholar 

  • van der Woude F (1966) Mössbauer effect in α-Fe2O3. Phys Status Solidi 17:417–432 www.alfa.com/en/catalog/047044

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Prof. J. Litterst and Dr. M. Kracken at the Technical University of Braunschweig for the experimental spectra of dextran-coated nanoparticles.

Funding

Experimental part of this work (section “Samples and experiment”) was supported by the Russian Ministry for Education and Science, project no. 14.587.21.0027. Theoretical and calculation part (section “Results of analysis”) was carried out under Program of Federal Agency for Scientific Organizations of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mishchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishchenko, I., Chuev, M., Kubrin, S. et al. Continual model of magnetic dynamics for antiferromagnetic particles in analyzing size effects on Morin transition in hematite nanoparticles. J Nanopart Res 20, 141 (2018). https://doi.org/10.1007/s11051-018-4248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4248-9

Keywords

Navigation