Skip to main content
Log in

One-step solvothermal synthesis of TiO2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr(VI)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium, Cr(VI), is a mutagenic and carcinogenic heavy metal environmental pollutant. Photoreduction is one of the remediation methods of the hexavalent chromium Cr(VI), which necessitates design of an efficient catalyst for visible light performance. Here, we report a one-step solvothermal synthesis of TiO2-reduced graphene oxide (TiO2-xRGO) composite catalysts using a mild reducing agent, dimethylformamide (DMF). Nanoscale TiO2 particles in the size range of 4–9 nm were formed on the reduced graphene sheets. The formation of the composite catalysts was accompanied by the appearance of a large fluorescence quenching, which indicates an efficient separation of photogenerated electrons and holes. The composites displayed excellent photoreduction of Cr(VI) in the visible light, which was found to be a function of the weight percentage of RGO in the composite. At the optimum composition of TiO2-xRGO, a maximum removal rate of 96% was recorded, which was higher than that of the pristine TiO2, which showed no appreciable catalytic activity under the same condition. The performance degraded with increasing RGO content in the composite, which can be attributed to the higher electron-hole recombination on the RGO surface. The Cr(VI) photoreduction also exhibited a pH dependence. The highest removal rate was observed in the acidic medium.

Photocatalytic reduction of Cr(VI) to Cr(III) on TiO2-RGO nanocomposite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529. doi:10.1016/j.jhazmat.2009.05.039

    Article  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21. doi:10.1016/S1389-5567(00)00002-2

  • Garg B, Bisht T, Ling Y-C (2014) Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules 19:14582–14614. doi:10.3390/molecules190914582

    Article  Google Scholar 

  • Jo W-K, Kumar S, Isaacs MA et al (2017) Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo red. Appl Catal B Environ 201:159–168. doi:10.1016/j.apcatb.2016.08.022

    Article  Google Scholar 

  • Khalil LB, Mourad WE, Rophael MW (1998) Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B Environ 17:267–273. doi:10.1016/S0926-3373(98)00020-4

    Article  Google Scholar 

  • Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon N Y 49:741–772. doi:10.1016/j.carbon.2010.10.010

    Article  Google Scholar 

  • Liao G, Chen S, Quan X et al (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22:2721. doi:10.1039/c1jm13490f

    Article  Google Scholar 

  • Liu J, Liu L, Bai H et al (2011a) Gram-scale production of graphene oxide-TiO2 nanorod composites: towards high-activity photocatalytic materials. Appl Catal B Environ 106:76–82. doi:10.1016/j.apcatb.2011.05.007

    Article  Google Scholar 

  • Liu X, Pan L, Lv T et al (2011b) Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(vi). RSC Adv 1:1245. doi:10.1039/c1ra00298h

    Article  Google Scholar 

  • Loryuenyong V, Jarunsak N, Chuangchai T, Buasri A (2014) The photocatalytic reduction of hexavalent chromium by controllable mesoporous anatase TiO2 nanoparticles. Adv Mater Sci Eng 2014:1–8. doi:10.1155/2014/348427

    Article  Google Scholar 

  • Lu T, Zhang R, Hu C et al (2013) TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst. Phys Chem Chem Phys 15:12963–12970. doi:10.1039/c3cp50942g

    Article  Google Scholar 

  • Mai JW, Liu W, Qiu JL et al (2015) Characterization and enhanced visible-light photocatalytic properties of {001} facets-exposed TiO2-reduced graphene oxide nanocomposites. J Nanosci Nanotechnol 15:4870–4876. doi:10.1166/jnn.2015.9842

    Article  Google Scholar 

  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL et al (2012) Design of graphene-based TiO2 photocatalysts-a review. Environ Sci Pollut Res 19:3676–3687. doi:10.1007/s11356-012-0939-4

    Article  Google Scholar 

  • Nawaz M, Miran W, Jang J, Lee DS (2017) One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl Catal B Environ 203:85–95. doi:10.1016/j.apcatb.2016.10.007

    Article  Google Scholar 

  • Park S, An J, Piner RD et al (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594. doi:10.1021/cm801932u

    Article  Google Scholar 

  • Perera SD, Mariano RG, Vu K et al (2012) Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956

    Article  Google Scholar 

  • Rauf A, Sher Shah MSA, Choi GH et al (2015) Facile synthesis of hierarchically structured bi 2 S 3 /bi 2 WO 6 Photocatalysts for highly efficient reduction of Cr(VI). ACS Sustain Chem Eng 3:2847–2855. doi:10.1021/acssuschemeng.5b00783

    Article  Google Scholar 

  • Sadik OA, Noah NM, Okello VA, Sun Z (2014) Catalytic reduction of hexavalent chromium using palladium nanoparticles: an undergraduate nanotechnology laboratory. J Chem Educ 91:269–273. doi:10.1021/ed300229r

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  • Sun L, Zhao Z, Zhou Y, Liu L (2012) Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nano 4:613–620. doi:10.1039/c1nr11411e

    Google Scholar 

  • Tan LL, Chai SP, Mohamed AR (2012) Synthesis and applications of graphene-based TiO 2 photocatalysts. ChemSusChem 5:1868–1882. doi:10.1002/cssc.201200480

    Article  Google Scholar 

  • Tuinstra F, Koenig L (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. doi:10.1063/1.1674108

    Article  Google Scholar 

  • Vinayan BP, Nagar R, Ramaprabhu S (2012) Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications. J Mater Chem 22:25325–25334. doi:10.1039/c2jm33894g

    Article  Google Scholar 

  • Vinu R, Madras G (2008) Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with Nano-TiO2. Environ Sci Technol 42:913–919. doi:10.1021/es0720457

    Article  Google Scholar 

  • Wang H, Yuan X, Wu Y et al (2015a) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J Hazard Mater 286:187–194. doi:10.1016/j.jhazmat.2014.11.039

    Article  Google Scholar 

  • Wang H, Yuan X, Wu Y et al (2015b) Facile synthesis of polypyrrole decorated reduced graphene oxide-Fe3O4 magnetic composites and its application for the Cr(VI) removal. Chem Eng J 262:597–606. doi:10.1016/j.cej.2014.10.020

    Article  Google Scholar 

  • Wang P, Tang Y, Dong Z, Lim T (2013) Ag–AgBr-TiO2-RGO nanocomposite for visible-light photocatalytic degradation of penicillin G.pdf. J Mater Chem A 1:4718–4727. doi:10.1039/c3ta01042b

    Article  Google Scholar 

  • Wang WS, Wang DH, Qu WG et al (2012) Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J Phys Chem C 116:19893–19901. doi:10.1021/jp306498b

    Article  Google Scholar 

  • Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239. doi:10.1002/adma.200802738

    Article  Google Scholar 

  • Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B Environ 101:382–387. doi:10.1016/j.apcatb.2010.10.007

    Article  Google Scholar 

  • Yang L, Xiao Y, Liu S et al (2010) Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl Catal B Environ 94:142–149. doi:10.1016/j.apcatb.2009.11.002

    Article  Google Scholar 

  • Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501. doi:10.1039/c0cp01139h

    Article  Google Scholar 

  • Zhang WF, Zhang MS, Yin Z (2000) Microstructures and visible photoluminescence of TiO2 nanocrystals. physstatsol(a) 179:319–328

    Google Scholar 

  • Zhao D, Sheng G, Chen C, Wang X (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B Environ 111–112:303–308. doi:10.1016/j.apcatb.2011.10.012

    Article  Google Scholar 

  • Zhao Y, Zhao D, Chen C, Wang X (2013) Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J Colloid Interface Sci 405:211–217. doi:10.1016/j.jcis.2013.05.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge access to the experimental facilities at Sophisticated Analytical Instruments Facility (SAIF) and Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyabrata Mohapatra or Smrutiranjan Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

PM acknowledges financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi, vide the sanction order no. SR/FT/CS-61/2011 dated 16/05/2012 under Fast Track Scheme. SP and AS acknowledge financial support from IRCC seed grant, IIT Bombay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A., Mishra, S.P., Mohapatra, P. et al. One-step solvothermal synthesis of TiO2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr(VI). J Nanopart Res 19, 206 (2017). https://doi.org/10.1007/s11051-017-3894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3894-7

Keywords

Navigation