Skip to main content
Log in

Improved photocatalytic degradation of Orange G using hybrid nanofibers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Functionalised electrospun polyamide-6 (PA-6) nanofibres incorporating gadolinium oxide nanoparticles conjugated to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc) as the sensitizer were prepared for the photocatalytic degradation of Orange G. Fibres incorporating the phthalocyanine alone or a mixture of the nanoparticles and phthalocyanine were also generated. The singlet oxygen-generating ability of the sensitizer was shown to be maintained within the fibre mat, with the singlet oxygen quantum yields increasing upon incorporation of the magnetic nanoparticles. Consequently, the rate of the photodegradation of Orange G was observed to increase with an increase in singlet oxygen quantum yield. A reduction in the half-lives for the functionalised nanofibres was recorded in the presence of the magnetic nanoparticles, indicating an improvement in the efficiency of the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achadu OJ, Uddin I, Nyokong T (2016) Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. J Photochem Photobiol A Chem 317:12–25

    Article  Google Scholar 

  • Agboola B, Ozoemena KI, Nyokong T (2006) Synthesis and electrochemical characterisation of benzyl mercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochemica Acta 51:4379–4387

    Article  Google Scholar 

  • Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99:2379–2450

    Article  Google Scholar 

  • Aplin R, Wait TD (2000) Comparison of three advanced oxidation. Processes for Degradation of Textile Dyes Water Sci Technol 42:345–354

    Google Scholar 

  • Bin Na H, Chan Song I, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148

    Article  Google Scholar 

  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149

    Article  Google Scholar 

  • Deng YH, Wang CC, Hu JH, Yang YL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A:Physicochem Eng Aspects 62:87–93

    Article  Google Scholar 

  • Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y (2008)(2006) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl Catal B 84:468–473

    Article  Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  Google Scholar 

  • Foote CS (1979) In: Wasserman HH, Murray RW (eds) Quenching of singlet oxygen. Academic Press, New York, San Francisco, London, pp 139–171

    Google Scholar 

  • Goethals A, Mugadza T, Arslanoglu Y, Zugle R, Antunes E, Van Hulle SWH, Nyokong T, De Clerck K (2014) Polyamide nanofiber membranes functionalized with zinc phthalocyanines. J Appl Polym Sci 2014:40486 (7 pages)

    Google Scholar 

  • Idowu M, Nyokong T (2008) Photosensitizing properties of octacarboxy metallophthalocyanines in aqueous medium and their interaction with bovine serum albumin. J Photochem Photobiol A Chem 200:396–401

    Article  Google Scholar 

  • Idowu M, Nyokong T (2012) Photophysical behavior of fluorescent nanocomposites of phthalocyanine linked to quantum dots and magnetic nanoparticles. Int J Nanosci 11(2012). Article number 1250018

  • Kadish K, Smith KM, Guilard R (eds) (2003) Porphyrins handbook: applications of phthalocyanines, vol 19. Academic Press, New York

    Google Scholar 

  • Lang K, Mosinger J, Kubat P (2016) Nanofibers and nanocomposite films for singlet oxygen based applications. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. Royal Society of Chemistry, Thomas Graham House, Cambridge, pp 305–322. ISBN 978-1-78262-038-9

  • Ledwaba M, Masilela N, Nyokong T, Antunes E (2015) Surface modification of silica-coated gadolinium oxide nanoparticles with zinc tetracarboxyphenoxy phthalocyanine for the photodegradation of Orange G. J. Mol. Cat. A: Chem. 403:64–76

    Article  Google Scholar 

  • Li Y, Pritchett TM, Huang J, Ke M, Shao P, Sun W (2008) Photophysics and nonlinear absorption of peripheral substituted zinc phthalocyanines. J Phys Chem A 112:7200–7207

    Article  Google Scholar 

  • Mafukidze DM, Mashazi P, Nyokong T (2016) Synthesis and singlet oxygen production by a phthalocyanine when embedded in asymmetric polymer membranes. Polymer 105:203–213

    Article  Google Scholar 

  • Marais E, Klein R, Antunes E, Nyokong T (2007) Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. J Mol Catal A: Chem 261:36–42

    Article  Google Scholar 

  • Masilela N, Kleyi P, Tshentu Z, Priniotakis G, Westbroek P, Nyokong T (2013) Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dyes Pigments 96:500–508

    Article  Google Scholar 

  • Meetani MA, Rauf MA, Hisaindee S, Khaleel A, AlZamly A, Ahmad A (2011) Mechanistic studies of photoinduced degradation of Orange G using LC/MS. RSC Adv 1:490–497

    Article  Google Scholar 

  • Modisha P, Nyokong T (2014) Fabrication of phthalocyanine-magnetic nanoparticles hybrid nanofibers for degradation of Orange-G. J Mol Cat A: Chem 381:132–137

    Article  Google Scholar 

  • Modisha P, Antunes E, Mack J, Nyokong T (2013a) Improvement of the photophysical parameters of zinc octacarboxy phthalocyanine upon conjugation to magnetic nanoparticles. Int J Nanosci 12(2013):1350010 10 pp

    Article  Google Scholar 

  • Modisha P, Nyokong T, Antunes E (2013b) Photodegradation of Orange-G using zinc octacarboxyphthalocyanine supported on Fe3O4 nanoparticles. J Mol Cat A: Chem 380:131–138

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  Google Scholar 

  • Mosinger J, Lang K, Kubát P, Sýkora J, Hof M, Plistil L, Mosinger B Jr (2009) Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers. J Fluoresc 19:705–713

    Article  Google Scholar 

  • Neppolian N, Choi HC, Sakhivel S, Banunathi A, Murugaan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181

    Article  Google Scholar 

  • Nyokong T (2006) In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes: electrocatalysis, electrophotochemistry, and biomimetric electro-catalysis. Springer, Berlin Chapter 7

    Google Scholar 

  • Ogunsipe A, Nyokong T (2005) Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A Chem 173:211–220

    Article  Google Scholar 

  • Okura I (2001) Photosensitization of porphyrins and phthalocyanines. Gordon and Breach Publishers, Berlin

    Book  Google Scholar 

  • Oluwole DO, Tilbury CM, Prinsloo E, Limson J, Nyokong T (2016) Photophysicochemical properties and in vitro cytotoxicity of zinc tetracarboxyphenoxy phthalocyanine—quantum dot nanocomposites. Polyhedron 106:92–100

    Article  Google Scholar 

  • Osifeko OL, Nyokong T (2014) Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water. Dyes Pigments 111(2014):8–15

    Article  Google Scholar 

  • Rosenthal I, Ben Hur E (1996) In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, vol 1–4. Wiley VCH, New York

    Google Scholar 

  • Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B, Schnurpfeil GJ (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyrins Phthalocyanines 2:145–158

    Article  Google Scholar 

  • Stylidi M, Kondarides DI, Verykios XE (2004) Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO 2 suspensions. Appl Catal 47:189–201

    Article  Google Scholar 

  • Sun J, Wang X, Sun J, Sun R, Sun S, Qiao L (2006) Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J Mol Catal A Chem 260:241–245

    Article  Google Scholar 

  • Tombe S, Chidawanyika W, Antunes E, Priniotakis G, Westbroek P, Nyokong T (2012) Physicochemical behavior of zinc tetrakis (benzylmercapto) phthalocyanine when used to functionalize gold nanoparticles and in electrospun fibers. J Photochem Photobiol A Chem 240:50–58

    Article  Google Scholar 

  • Tombe S, Antunes E, Nyokong T (2013) Electrospun fibers functionalized with phthalocyanine-gold nanoparticle conjugates for photocatalytic applications. J Mol Catal A Chem 371:125–134

    Article  Google Scholar 

  • Wöhrle D, Suvorova O, Gerdes R, Bartels O, Lapok L, Baziakina N, Makarov S, Slodek A (2004) Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts. J Porphyrins Phthalocyanines 8:1020–1041

    Article  Google Scholar 

  • Zhou L, Gu Z, Liu X, Yin W, Tian G, Yan L, Jin S, Ren W, Xing G, Li W, Chang X, Huc Z, Zhao Y (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22:966–974

    Article  Google Scholar 

  • Zugle R, Litwinski C, Torto N, Nyokong T (2011) Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine. New J Chem 35:1588–1595

    Article  Google Scholar 

  • Zugle R, Antunes E, Khene S, Nyokong T (2012) Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron 33:74–81

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Research Foundation Incentive and CPRR grants, South Africa (Grant number 93474), University of the Western Cape, Rhodes University (EA) and by the Department of Science and Technology (DST) South Africa through a DST/NRF South African Research Chairs Initiative for the Professor of Medicinal Chemistry and Nanotechnology (TN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Antunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledwaba, M., Masilela, N., Nyokong, T. et al. Improved photocatalytic degradation of Orange G using hybrid nanofibers. J Nanopart Res 19, 158 (2017). https://doi.org/10.1007/s11051-017-3853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3853-3

Keywords

Navigation