Skip to main content
Log in

Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl-N,N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag+ into Ag0 by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

A combined strategy of in situ oxidation and assembly was developed to construct Ag/AgCl nanospheres and nanocubes from Ag nanoparticles, which exhibited highly photocatalytic activity and good stability for degrading methyl orange under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ai L, Zhang C, Jiang J (2013) Hierarchical porous AgCl@Ag hollow architectures: self-templating synthesis and highly enhanced visible light photocatalytic activity. Appl Catal B-Environ 142-143:744–751. doi:10.1016/j.apcatb.2013.05.053

    Article  Google Scholar 

  • An C, Peng S, Sun Y (2010) Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst. Adv Mater 22:2570–2574. doi:10.1002/adma.200904116

    Article  Google Scholar 

  • An C, Wang J, Jiang W et al (2012) Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale 4:5646–5650. doi:10.1039/c2nr31213a

    Article  Google Scholar 

  • An C, Wang R, Wang S et al (2011) Converting AgCl nanocubes to sunlight-driven plasmonic AgCl : Ag nanophotocatalyst with high activity and durability. J Mater Chem 21:11532–11536. doi:10.1039/C1JM10244C

    Article  Google Scholar 

  • Bi Y, Ye J (2009) In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. Chem Commun 43:6551–6553. doi:10.1039/B913725D

    Article  Google Scholar 

  • Cai B, Wang J, Gan S et al (2014) A distinctive red Ag/AgCl photocatalyst with efficient photocatalytic oxidative and reductive activities. J Mater Chem A 2:5280–5286. doi:10.1039/C3TA15262F

    Article  Google Scholar 

  • Chen D, Liu M, Chen Q et al (2014) Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP–Ag+ hybrid precursors with porosity. Appl Catal B-Environ 144:394–407. doi:10.1016/j.apcatb.2013.07.042

    Article  Google Scholar 

  • Dang X, Zhang X, Lu Z et al (2014) Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. J Nanopart Res 16:2215. doi:10.1007/s11051-013-2215-z

    Article  Google Scholar 

  • Devi TB, Begum S, Ahmaruzzaman M (2016) Photo-catalytic activity of plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria blue B from aqueous phase. J Photoch Photobio B 160:260–270. doi:10.1016/j.jphotobiol.2016.03.033

    Article  Google Scholar 

  • Dugay J, Gimenez-Marques M, Kozlova T et al (2015) Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. Adv Mater 27:1288–1293. doi:10.1002/adma.201404441

    Article  Google Scholar 

  • Gao X, Esteves RJ, Luong TTH et al (2014) Oxidation-induced self-assembly of Ag Nanoshells into transparent and opaque Ag hydrogels and aerogels. J Am Chem Soc 136:7993–8002. doi:10.1021/ja5020037

    Article  Google Scholar 

  • Ge J, Wang X, Yao H-B et al (2015) Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight. Mater Horiz 2:509–513. doi:10.1039/c5mh00069f

    Article  Google Scholar 

  • Gómez-Graña S, Fernández-López C, Polavarapu L et al (2015) Gold nanooctahedra with tunable size and microfluidic-induced 3D assembly for highly uniform SERS-active Supercrystals. Chem Mater 27:8310–8317. doi:10.1021/acs.chemmater.5b03620

    Article  Google Scholar 

  • Han C, Ge L, Chen C et al (2014) Site-selected synthesis of novel Ag@AgCl nanofraames with efficient visible light induced photocatalytic activity. J Mater Chem A 2:12594–12600. doi:10.1039/c4ta01941e

    Article  Google Scholar 

  • Han L, Wang P, Zhu C et al (2011) Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst. Nanoscale 3:2931–2935. doi:10.1039/c1nr10247h

    Article  Google Scholar 

  • Henzie J, Grünwald M, Widmer-Cooper A et al (2012) Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat Mater 11:131–137. doi:10.1038/nmat3178

    Article  Google Scholar 

  • Hu P, Cao Y (2012) A new chemical route to a hybrid nanostructure: room-temperature solid-state reaction synthesis of Ag@AgCl with efficient photocatalysis. Dalton Trans 41:8908–8912. doi:10.1039/c2dt30779k

    Article  Google Scholar 

  • Jia C, Yang P, Huang B (2014) Uniform Ag/AgCl necklace-like nano-heterostructures: fabrication and highly efficient plasmonic photocatalysis. ChemCatChem 6:611–617. doi:10.1002/cctc.201300804

    Article  Google Scholar 

  • Kim PY, Oh J-W, Nam J-M (2015) Controlled Co-assembly of nanoparticles and polymer into Ultralong and continuous one-dimensional nanochains. J Am Chem Soc 137:8030–8033. doi:10.1021/jacs.5b04714

    Article  Google Scholar 

  • Lee HS, Kim JE, Kim T et al (2015) Ionic liquid-assisted synthesis of highly branched Ag:AgCl hybrids and their photocatalytic activity. J Alloy Compd 621:378–382. doi:10.1016/j.jallcom.2014.09.222

    Article  Google Scholar 

  • Li H, Wu T, Cai B et al (2015) Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl:Ag hollow nanocrystals. Appl Catal B-Environ 164:344–351. doi:10.1016/j.apcatb.2014.09.049

    Article  Google Scholar 

  • Li J, Zhu J, Liu X (2014) Ultrafine silver nanoparticles obtained from ethylene glycol at room temperature: catalyzed by tungstate ions. Dalton Trans 43:132–137. doi:10.1039/C3DT52242C

    Article  Google Scholar 

  • Lin ZY, Xiao J, Yan JH et al (2015) Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes. J Mater Chem A 3:7649–7658. doi:10.1039/c5ta00942a

    Article  Google Scholar 

  • Long M, Cai W (2014) Advanced nanoarchitectures of silver/silver compound composites for photochemical reactions. Nanoscale 6:7730–7742. doi:10.1039/c3nr06302j

    Article  Google Scholar 

  • Lou Z, Huang B, Qin X et al (2012) One-step synthesis of AgCl concave cubes by preferential overgrowth along <111 > and <110 > directions. Chem Commun 48:3488–3490. doi:10.1039/C2CC30766A

    Article  Google Scholar 

  • Ma B, Guo J, Dai W-L et al (2013) Highly stable and efficient Ag/AgCl core–shell sphere: controllable synthesis, characterization, and photocatalytic application. Appl Catal B-Environ 130-131:257–263. doi:10.1016/j.apcatb.2012.10.026

    Article  Google Scholar 

  • Miller CJ, Yu H, Waite TD (2013) Degradation of rhodamine B during visible light photocatalysis employing Ag@AgCl embedded on reduced graphene oxide. Colloid Surface A 435:147–153. doi:10.1016/j.colsurfa.2013.01.014

    Article  Google Scholar 

  • Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320. doi:10.1039/C2CS35266D

    Article  Google Scholar 

  • Pang F, Liu X, He M et al (2014) Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity. Nano Res 8:106–116. doi:10.1007/s12274-014-0580-2

    Article  Google Scholar 

  • Schliehe C, Juarez BH, Pelletier M et al (2010) Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329:550–553. doi:10.1126/science.1188035

    Article  Google Scholar 

  • Shen Y, Chen P, Xiao D et al (2015) Spherical and sheet like Ag/AgCl nanostructures: interesting photocatalysts with unusual facet-dependent yet substrate-sensitive reactivity. Langmuir 31:602–610. doi:10.1021/la504328j

    Article  Google Scholar 

  • Suh MP, Moon HR, Lee EY et al (2006) A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J Am Chem Soc 128:4710–4718. doi:10.1021/ja056963l

    Article  Google Scholar 

  • Sun L, Zhang R, Wang Y et al (2014) Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS Appl Mater Interfaces 6:14819–14826. doi:10.1021/am503345p

    Google Scholar 

  • Tang Y, Jiang Z, Xing G et al (2013) Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv Funct Mater 23:2932–2940. doi:10.1002/adfm.201203379

    Article  Google Scholar 

  • Wang Y, Chen P, Shen Y et al (2015) Visible-light-driven Ag/AgCl plasmonic photocatalysts via a surfactant-assisted protocol: enhanced catalytic performance by morphology evolution from near-spherical to 1D structures. Phys Chem Chem Phys 17:25182–25190. doi:10.1039/c5cp03618f

    Article  Google Scholar 

  • Wang D, Duan Y, Luo Q et al (2012a) Novel preparation method for a new visible light photocatalyst: mesoporous TiO2 supported Ag/AgBr. J Mater Chem 22:4847–4854. doi:10.1039/c2jm14628b

    Article  Google Scholar 

  • Wang P, Huang B, Dai Y et al (2012b) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825. doi:10.1039/c2cp40823f

    Article  Google Scholar 

  • Wang P, Huang B, Lou Z et al (2010) Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem Eur J 16:538–544. doi:10.1002/chem.200901954

    Article  Google Scholar 

  • Wang P, Huang B, Qin X et al (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933. doi:10.1002/anie.200802483

    Article  Google Scholar 

  • Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. doi:10.1039/c4cs00126e

    Article  Google Scholar 

  • Xu Z, Han L, Hu P et al (2014) Facile synthesis of small Ag@AgCl nanoparticles via a vapor diffusion strategy and their highly efficient visible-light-driven photocatalytic performance. Catal Sci Technol 4:3615–3619. doi:10.1039/c4cy00889h

    Article  Google Scholar 

  • Xu H, Li H, Xia J et al (2011) One-pot synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl in ionic liquid. ACS Appl Mater Interfaces 3:22–29. doi:10.1021/am100781n

    Article  Google Scholar 

  • Xu H, Xu Y, Pang X et al (2015) A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Sci Adv 1:e1500025. doi:10.1126/sciadv.1500025

    Article  Google Scholar 

  • Yao X, Liu X, Zhu D (2015) Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity. Catal Commun 59:151–155. doi:10.1016/j.catcom.2014.10.012

    Article  Google Scholar 

  • Yin H, Wang X, Wang L et al (2016) Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity. J Alloy Compd 657:44–52. doi:10.1016/j.jallcom.2015.10.055

    Article  Google Scholar 

  • Zhu M, Chen P, Liu M (2011a) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536. doi:10.1021/nn200088x

    Article  Google Scholar 

  • Zhu M, Chen P, Liu M (2011b) Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. J Mater Chem 21:16413–16419. doi:10.1039/c1jm13326h

    Article  Google Scholar 

  • Zhu M, Chen P, Ma W et al (2012) Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts. ACS Appl Mater Interfaces 4:6386–6392. doi:10.1021/am302100u

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support of Doctoral Programs Foundation of China (No. 20110032110018) and Tianjin Science and Technology Support Program (No. 14TXGCCX001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Zhou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 2553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Liu, D., Wang, T. et al. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts. J Nanopart Res 18, 335 (2016). https://doi.org/10.1007/s11051-016-3658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3658-9

Keywords

Navigation