Skip to main content
Log in

Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The use of superparamagnetic iron oxide nanoparticles (SPIONs) and radiolabelled nanoparticles (NPs) has grown considerably over the recent years, and the SPIONs labelled with medicinal radionuclides offer new opportunities in multimodal diagnostics and in the drug-delivery systems for targeted alpha-particle therapy (TAT) driven by magnetic field gradient or by biologically active moieties bound on NPs shell. However, the mechanisms of NPs radiolabelling are not studied substantially and still remain unclear, even though the way of label attachment directly implies the stability of the label-nanoparticle construct. Since the 223Ra was the first clinically approved alpha-emitter, it is a promising nuclide for further development of its targeted carriers. We report here on the study of 223Ra uptake by the Fe3O4 SPIONs, together with an attempt to propose the 223Ra uptake mechanism by the Fe3O4 NPs in the presence of a phosphate buffer a typical formulation medium, under the pseudo-equilibrium conditions. Further, the in vitro stability tests of the prepared [223Ra]Fe3O4 NPs were performed to estimate the 223Ra label stability. The potential use of 223Ra-labelled SPIONs in theranostic applications is also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F (2003) Magnetic drug targeting—biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Targ 11(3):139–149

    Article  Google Scholar 

  • Ames LL, McGarrah JE, Walker BA, Salter PF (1983) Uranium and radium sorption on amorphous ferric oxyhydroxide. Chem Geol 40(1–2):135–148

    Article  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Bayer Pharma AG (2016) Xofigo® - Summary of product characteristics. http://www.xofigo.com/omr/online/Xofigo_SMPC.pdf. Accessed 1 May 2016

  • Burke BP, Baghdadi N, Clemente GS, Camus N, Guillou A, Kownacka AE, Domarkas J, Halime Z, Tripier R, Archibald SJ (2014) Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discuss 175:59–71

    Google Scholar 

  • Bychkova AV, Sorokina ON, Rosenfeld MA, Kovarski AL (2015) Multifunctional biocompatible coatings on magnetic nanoparticles. Russ Chem Rev 81(11):1026–1050

    Article  Google Scholar 

  • Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20(2):397–401

    Article  Google Scholar 

  • Dvořák L, Ledvinka T, Sobotka M (1991) FAMULUS 3.1, Computer equipment, Prague

  • Filipská H, Štamberg K (2005) Mathematical modeling of a Cs(I)—Sr(II)—bentonite—magnetite sorption system, simulating the processes taking place in a deep geological repository. Acta Polytech 45(5):11–18

    Google Scholar 

  • Filipská H, Štamberg K (2006) Sorption of Cs(I) and Sr(II) on a mixture of bentonite and magnetite using SCM + IExM: a parametric study. J Radioanal Nucl Chem 270(3):531–542

    Article  Google Scholar 

  • Gonneea ME, Morris PJ, Dulaiova H, Charette MA (2008) New perspectives on radium behavior within a subterranean estuary. Mar Chem 109(3–4):250–267

    Article  Google Scholar 

  • Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729

    Article  Google Scholar 

  • Guseva LI, Tikhomirova GS, Dogadkin NN (2004) Separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry 46(1):58–62

    Article  Google Scholar 

  • Herbelin AL, Westall JC (1996) FITEQL—a computer program for determination of chemical equilibrium constants from experimental data. Version 3.2, Report 96-01. Department of Chemistry, Oregon State University, Corvallis, Oregon, USA

  • Hoffman D, Sun M, Yang L, McDonagh PR, Corwin F, Sundaresan G, Wang L, Vijayaragavan V, Thadigiri C (2014) Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am J Nucl Med Mol Imag 4(6):548–560

    Google Scholar 

  • Kirby HW, Salutsky ML, Grace WR (1964) The radiochemistry of radium. Springfield, Virginia

    Google Scholar 

  • Kozempel J, Vlk M (2014) Nanoconstructs in targeted alpha-therapy. Curr Nanomed 4(2):71–76. doi:10.2174/1877912305666150102000549

    Google Scholar 

  • Kozempel J, Vlk M, Málková E, Bajzíková A, Bárta J, Santos-Oliveira R, Malta Rossi A (2015) Prospective carriers of 223Ra for targeted alpha particle therapy. J Radioanal Nucl Chem 304(1):443–447

    Article  Google Scholar 

  • Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  • Kroupová H (2004) Studies of sorption interactions in system: Bentonite—selected radionuclides and container corrosion products—underground water. Doctoral Thesis. Prague, Czech Technical University, Department of Nuclear Chemistry

  • Lábár JL (2005) Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction. Ultramicroscopy 103:237–249

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  • Li W-P, Liao P-Y, Su C-H, Yeh C-S (2014) Formation of oligonucleotides-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light responsive theranostic platform. J Am Chem Soc 136(28):10062–10075

    Article  Google Scholar 

  • Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surf A 212:219–226

    Article  Google Scholar 

  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392

    Article  Google Scholar 

  • Mokhodoeva O, Guseva L, Dogadkin N (2015) Isolation of generator-produced Ra-223 in 0.9% NaCl solutions containing EDTA for direct radiotherapeutic studies. J Radioanal Nucl Chem 304(1):449–453

    Article  Google Scholar 

  • Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, Doktycz MJ, Gu BH, Roeder RK, Wang W, Retterer ST (2015) New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale 7(15):6545–6555

    Article  Google Scholar 

  • Nilsson S, Larsen RH, Foss SD, Balteskard L, Borch KW, Westlin J-E, Salberg G, Bruland ØS (2005) Clin Cancer Res 11(12):4451–4459

    Article  Google Scholar 

  • OECD-NEA (2016) ZZ-HATCHES-20, Database for radiochemical modelling. https://www.oecd-nea.org/tools/abstract/detail/nea-1210. Accessed 1 May 2016

  • Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295

    Article  Google Scholar 

  • Piotrowska A, Leszczuk E, Bruchertseifer F, Morgenstern A, Bilewicz A (2013) Functionalized NaA nanozeolites labeled with Ra-224, Ra-225 for targeted alpha therapy. J Nanopart Res 15:2082. doi:10.1007/s11051-013-2082-7

    Article  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  • Sajih M, Bryan ND, Livens FR, Vaughan DJ, Descostes M, Phrommavanh V, Nos J, Morris K (2014) Adsorption of radium and barium on goethite and ferrihydrite: a kinetic and surface complexation modelling study. Geochim Cosmochim Ac 146:150–163

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Shore ND (2015) Radium-223 dichloride for metastatic castration-resistant prostate cancer: the urologist’s perspective. Urology 85(4):717–724

    Article  Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358. doi:10.3402/nano.v1i0.5358

    Article  Google Scholar 

  • Slouf M, Ostafinska A, Nevoralova M, Fortelny I (2015) Morphological analysis of polymer systems with broad particle size distribution. Polym Test 42:8–16

    Article  Google Scholar 

  • Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S, Psimadas D, Paravatou-Petsotas M, Palamaris L, Hazle JD, Kagadis GC (2014) (99 m)Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interf Sci 433:163–175

    Article  Google Scholar 

  • Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1729

    Article  Google Scholar 

  • Wang G, de Kruijff RM, Rol A, Thijssen L, Mendes E, Morgenstern A, Bruchertseifer F, Stuart MCA, Wolterbeek HT, Denkova AG (2014) Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl Radiat Isot 85:45–53

    Article  Google Scholar 

  • Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, Standaert RF, Mirzadeh S (2011) LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem 22(4):766–776

    Article  Google Scholar 

  • Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Li J, Chen K, Zhang H, Cheng Z (2013) Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34(11):2796–2806

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to prof. Jan John for helpful comments and kind support and to Dr. Valery Shkinev for the scientific concept inspiration. This work has been partially supported by: the Russian Foundation for Basic Research and Moscow city Government according to the research project No 15-33-70004 «mol_а_mos»; the Technology Agency of the Czech Republic, grant No.: TA03010027 and the Health Research Agency of the Czech Republic, grant No.: 16-30544A. The electron microscopy at the Institute of Macromolecular Chemistry was supported by the Technology Agency of the Czech Republic, project No.: TE01020118 and the Ministry of Education, Youth and Sports of the Czech Republic, project No.: POLYMAT LO1507, program NPU I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Kozempel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal studies were performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhodoeva, O., Vlk, M., Málková, E. et al. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs . J Nanopart Res 18, 301 (2016). https://doi.org/10.1007/s11051-016-3615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3615-7

Keywords

Navigation