Skip to main content
Log in

Aggregation behaviour of TiO2 nanoparticles in natural river water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine and understand the aggregation behaviour of industrial nanoparticulate TiO2 (NPs) in the river water near a TiO2 production plant. The aggregation was tested in near-reality conditions with industrial NPs and the filtered river water in which they are potentially released. The initial size of TiO2 NPs is around 5 nm. The evolution of the hydrodynamic diameters of the TiO2 aggregates in the presence of added Suwannee River fulvic acid (SRFA) and illite in the filtered river water was measured at pH 8 for at least 30 min with dynamic light scattering and laser diffraction. The experiments performed in the filtered river water allowed the determination of the attachment efficiency coefficients, and the experiments performed under conditions facilitating aggregation (with higher Ca2+ content) were used to understand the potential aggregation processes. When no Ca2+ was added into the river water, the initially aggregated TiO2 did not develop a secondary aggregation in the presence of SRFA and illite. Upon the addition of 2.75 mM Ca2+, TiO2 was shown to heteroaggregate with illite at all tested concentrations. Consequently, in the studied river, the fate of the TiO2 NPs does not seem to be related to that of the clay suspended particles upstream of the plant. However, the behaviours of the TiO2 NPs and the clays are closely linked in the water with higher salt content, which is the case downstream of one of the industrial effluent release points.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam V, Loyaux-Lawniczak S, Quaranta G (2015) Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environ Sci Pollut Res 105:731–738

    Google Scholar 

  • AERM (Agence de l’Eau Rhin Meuse) (2013). http://rhin-meuse.eaufrance.fr/choixtheme?lang=fr. Accessed 10 June 2015

  • Benlot C, Blanchouin N (2005). www.snv.jussieu.fr/bmedia/aa/aa1.html. Accessed June 2015

  • Bouyer D, Coufort C (2005) Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physicochemical conditions. J Colloid Interface Sci 292:413–428

    Article  Google Scholar 

  • Chowdhury I, Walker SL, Mylon SE (2013) Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter. Environ Sci Process Impacts 15:275. doi:10.1039/c2em30680h

    Article  Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. doi:10.1021/es8023594

    Article  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition & aggregation: measurement, modelling and simulation. Elsevier, New York. ISBN 978-0-7506-0743-8

    Google Scholar 

  • Erhayem M, Sohn M (2014) Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Sci Total Environ 468–469:249–257. doi:10.1016/j.scitotenv.2013.08.038

    Article  Google Scholar 

  • Johnston BD, Scown TM, Moger J (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151

    Article  Google Scholar 

  • Keller AA, Wang H, Zhou D (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi:10.1021/es902987d

    Article  Google Scholar 

  • Labille J, Harns C, Bottero J-Y, Brant J (2015) Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ Sci Technol. doi:10.1021/acs.est.5b00357

    Google Scholar 

  • Liu HH, Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48:3281–3292. doi:10.1021/es405132z

    Article  Google Scholar 

  • Meesters JAJ, Koelmans AA, Quik JTK (2014) Multimedia modeling of engineered nanoparticles with simpleBox4nano: model definition and evaluation. Environ Sci Technol 48:5726–5736. doi:10.1021/es500548h

    Article  Google Scholar 

  • Ottofuelling S, Von Der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behaviour. Environ Sci Technol 45:10045–10052. doi:10.1021/es2023225

    Article  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549. doi:10.1021/es100598h

    Article  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1–11. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine River. Environ Sci Technol 46:6705–6713. doi:10.1021/es204530n

    Article  Google Scholar 

  • Praetorius A, Labille J, Scheringer M (2014) Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ Sci Technol. doi:10.1021/es501655v

    Google Scholar 

  • Richie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67:85–96

    Article  Google Scholar 

  • Sani-Kast N, Scheringer M, Slomberg D (2015) Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci Total Environ 535:150–159. doi:10.1016/j.scitotenv.2014.12.025

    Article  Google Scholar 

  • Sillanpää M, Paunu T-M, Sainio P (2011) Aggregation and deposition of engineered TiO2 nanoparticles in natural fresh and brackish waters. J Phys: Conf Ser 304:012018. doi:10.1088/1742-6596/304/1/012018

    Google Scholar 

  • Therezien M, Thill A, Wiesner MR (2014) Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Sci Total Environ 485–486:309–318. doi:10.1016/j.scitotenv.2014.03.020

    Article  Google Scholar 

  • Thill A, Moustier S, Aziz J (2001) Flocs restructuring during aggregation: experimental evidence and numerical simulation. J Colloid Interface Sci 243:171–182

    Article  Google Scholar 

  • Wang H, Dong Y, Zhu M (2015) Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Res 80:130–138. doi:10.1016/j.watres.2015.05.023

    Article  Google Scholar 

  • Wilkinson KJ, Lead JR (2006) Environmental colloids and particles: behaviour, separation and characterisation, volume 10. Wiley, Chichester

    Book  Google Scholar 

  • Zhang W, Crittenden J, Li K, Chen Y (2012) Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ Sci Technol 46:7054–7062. doi:10.1021/es203623z

    Article  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46:7520–7526. doi:10.1021/es3004427

    Article  Google Scholar 

  • Zhou D, Ji Z, Jiang X (2013) Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 8:e81239. doi:10.1371/journal.pone.0081239

    Article  Google Scholar 

  • Zhu M, Wang H, Keller AA (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380. doi:10.1016/j.scitotenv.2014.04.036

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Environment and Energy Management Agency (ADEME), the Region Alsace and the National Research Agency (ANR) project MESONNET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetana Quaranta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, V., Loyaux-Lawniczak, S., Labille, J. et al. Aggregation behaviour of TiO2 nanoparticles in natural river water. J Nanopart Res 18, 13 (2016). https://doi.org/10.1007/s11051-015-3319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3319-4

Keywords

Navigation