Skip to main content
Log in

Effects of Dzyaloshinsky–Moriya interaction on magnetism in nanodisks from a self-consistent approach

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky–Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S, Bihlmayer G, Kubetzka A, Pietzsch O, Bluegel S, Wiesendanger R (2007) Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447:190–193

    Article  Google Scholar 

  • Choe SB, Acremann Y, Scholl A, Bauer A, Doran A, Stöhr J, Padmore HA (2004) Vortex core-driven magnetization dynamics. Science 304:420–422

    Article  Google Scholar 

  • Dzyaloshinsky IE (1958) A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J Phys Chem Solids 4:241–255

    Article  Google Scholar 

  • Fert A (1990) Magnetic and transport properties of metallic multilayers. Mater Sci Forum 59–60:439–480

    Article  Google Scholar 

  • Fert A, Cros V, Sampaio J (2013) Skyrmions on the track. Nat Nanotechnol 8:152–156

    Article  Google Scholar 

  • Gong M, Qian Y, Yan M, Scarola VW, Zhang CW (2015) Dzyaloshinskii–Moriya interaction and spiral order in spin-orbit coupled optical lattices. Sci Rep 5:10050

    Article  Google Scholar 

  • Heide M, Bihlmayer G, Blügel S (2008) Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys Rev B 78:140403(R)

    Article  Google Scholar 

  • Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S (2011) Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat Phys 7:713–718

    Article  Google Scholar 

  • Im MY, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, Ono T (2012) Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk. Nat Commun 3:983

    Article  Google Scholar 

  • Kiselev NS, Bogdanov AN, Schäfer R, Rößler UK (2011) Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies. J Phys D 44:392001

    Article  Google Scholar 

  • Kwon HY, Bu KM, Wu YZ, Won C (2012) Effect of anisotropy and dipole interaction  on long-range order magnetic structures generated by Dzyaloshinskii–Moriya interaction. J Magn Magn Mater 324:2171–2176

    Article  Google Scholar 

  • Liu ZS, Sechovský V, Diviš M (2011) Magnetism of PrAl\(_2\) nanoparticle investigated with a quantum simulation model. J Phys Condens Matter 23:016002

    Article  Google Scholar 

  • Liu ZS, Sechovský V, Diviš M (2012) Magnetism of DyNi\(_2\)B\(_2\)C nanoparticle investigated with a quantum simulation model. Phys Status Solidi B 249:202–208

    Article  Google Scholar 

  • Liu ZS, Sechovský V, Diviš M (2014) Mutual verification of two new quantum simulation approaches for nanomagnets. Phys E 62:123–127

    Article  Google Scholar 

  • Luo YM, Zhou C, Won C, Wu YZ (2014) Effect of Dzyaloshinskii Moriya interaction on magnetic vortex. AIP Adv 4:047136

    Article  Google Scholar 

  • Ma FS, Zhou Y, Braun HB, Lew WS (2015) Skyrmion-based dynamic magnonic crystal. Nano Lett 15:4029–4036

    Article  Google Scholar 

  • Moriya T (1960) New mechanism of anisotropic superexchange interaction. Phys Rev Lett 4:228–230

    Article  Google Scholar 

  • Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Skyrmion lattice in a chiral magnet. Science 323:915–919

    Article  Google Scholar 

  • Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C (2010) Skyrmion lattice in the doped semiconductor Fe\(_{1-x}\)Co\(_x\)Si. Phys Rev B 81:041203(R)

    Article  Google Scholar 

  • Rohart S, Thiaville A (2013) Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys Rev B 88:184422

    Article  Google Scholar 

  • Sampaio J, Cros V, Rohart S, Thiaville A, Fert A (2013) Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol 8:839–844

    Article  Google Scholar 

  • Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T (2000) Magnetic vortex core observation in circular dots of permalloy. Science 289:930–932

    Article  Google Scholar 

  • Skyrme THR (1962) A unified field theory of mesons and baryons. Nucl Phys 31:556–569

    Article  Google Scholar 

  • Thiaville A, Rohart S, Jué E, Cros V, Fert A (2012) Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys Lett 100:57002

    Article  Google Scholar 

  • Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park HS, Tokura Y (2012) Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett 12:1673–1677

    Article  Google Scholar 

  • Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R (2002) Direct observation of internal spin structure of magnetic vortex cores. Science 298:577–580

    Article  Google Scholar 

  • Wilhelm H, Baenitz M, Schmidt M, Röler UK, Leonov A, Bogdanov AN (2011) Precursor phenomena at the magnetic ordering of the cubic helimagnet FeGe. Phys Rev Lett 107:127–203

    Article  Google Scholar 

  • Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Real-space observation of a two-dimensional skyrmion crystal. Nature 465:901–904

    Article  Google Scholar 

  • Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y (2011) Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10:106–109

    Article  Google Scholar 

Download references

Acknowledgments

Z.-S. Liu acknowledges the financial support by National Natural Science Foundation of China under grant No. 11274177. H. Ian is supported by the FDCT of Macau under Grant 013/2013/A1, University of Macau under Grants MRG022/IH/2013/FST and MYRG2014-00052-FST, and National Natural Science Foundation of China under Grant No. 11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Ian, H. Effects of Dzyaloshinsky–Moriya interaction on magnetism in nanodisks from a self-consistent approach. J Nanopart Res 18, 9 (2016). https://doi.org/10.1007/s11051-015-3311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3311-z

Keywords

Navigation