Skip to main content
Log in

Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The wide use of iron oxide nanoparticles (Fe2O3 NPs) in various applications has raised great concerns worldwide. In this work, we measured the potential harmful effects of Fe2O3 NP (<50 nm) at concentrations of 1 and 25 mg/L on haematological, biochemical, and ionoregulatory responses in an Indian major carp, Labeo rohita for a short-term period of 96 h. The results revealed significant (P < 0.05) decreases in haemoglobin, haematocrit, mean cellular volume, mean cellular haemoglobin, protein, sodium (Na+), potassium (K+), chloride (Cl) and gill Na+/K+-ATPase levels in both the concentrations. White blood cell, mean cellular haemoglobin concentration and glucose levels were significantly (P < 0.05) increased in response to both concentrations during the study period. However, no significant changes in red blood cell count and gill Na+/K+-ATPase (25 mg/L) activity were noticed compared to those of the respective control groups. Based on this study, it was found that the Fe2O3 NPs do have prominent effects on freshwater fish L. rohita. Our data suggest that the alterations of these parameters can be used as nonspecific biomarkers to monitor the environmental risks arising from nanoparticles in aquatic ecosystem and also regulate the use, production and release of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO in water suspensions. Water Res 40:3527–3532

    Google Scholar 

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 12th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Google Scholar 

  • Bai W, Zhang Z, Tian W (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    Google Scholar 

  • Banaee M, Mirvagefei AR, Rafei GR, Majazi Amiri B (2008) Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. Int J Environ Res 2:189–198

    Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Google Scholar 

  • Blaise C, Gagne F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nanomaterials to aquatic organisms. Environ Toxicol 25(5):591–598

    Google Scholar 

  • Booth CE, Mcdonald DG, Simons BP, Wood CM (1988) Effects of aluminum and low pH on net ion fluxes and ion balance in the brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 45:1563–1574

    Google Scholar 

  • Buffet PE, Pan JF, Poirier L, Triquet CA, Amiard JC, Gaudin P, Faverney CR, Guibbolini M, Gilliland D, Jones EV, Mouneyrac C (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in sea water and micro algal food. Ecotoxicol Environ Saf 89:117–124

    Google Scholar 

  • Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96:151–158

    Google Scholar 

  • Chen PJ, Su CH, Tseng CY, Tan SW, Cheng CH (2011) Toxicity assessments of nanoscale zero-valent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar Pollut Bull 63:339–346

    Google Scholar 

  • Chen LQ, Kang B, Ling J (2013a) Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization. J Nanopart Res 15:1507–1513

    Google Scholar 

  • Chen PJ, Wu W-L, Wu KC-W (2013b) The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res 47:3899–3909

    Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann TH (2008) Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology 17:326–343

    Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Google Scholar 

  • Cooper GR, McDaniel V (1970) Standard methods of clinical chemistry. Academic, New York, p 159

    Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. VCH Publishers, Weinheim

    Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RL (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Google Scholar 

  • da Rocha EL, Caramori GF, Rambo CR (2013) Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. Phys Chem Chem Phys 15:2282–2290

    Google Scholar 

  • Donaldson K, Stone V, Clouter A (2001) Ultrafine particles. Occup Environ Med 58:211–216

    Google Scholar 

  • Drabkin DL (1946) Spectrometric studies, XIV-The crystallographic and optimal properties of the hemoglobin of man in comparison with those of other species. J Biol Chem 164:703–723

    Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology, toxicology classmen of manufactured nanoparticles. Toxicol Sci 77(1):3–5

    Google Scholar 

  • Farkas J, Christian Urrea JAG, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96(1):44–52

    Google Scholar 

  • Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101(1):117–125

    Google Scholar 

  • Farmen E, Mikkelsen HN, Evensen Ø, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low g/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84

    Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Google Scholar 

  • Fernández D, García-Gómez C, Babin M (2013) In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274

    Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31(1):144–154

    Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P, Otero M, Amaral VS, Pereira E, Trindade T (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240

    Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Google Scholar 

  • Guzman KAD, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000-2004. Environ Sci Technol 40:1401–1407

    Google Scholar 

  • Handy RD, Shaw BJ (2007) Ecotoxicity of nanomaterials to fish: challenges for ecotoxicity testing. Integr Environ Assess Manag 3:458–460

    Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Google Scholar 

  • Hao LH, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Google Scholar 

  • Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21:1459–1466

    Google Scholar 

  • Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counter parts. Ecotoxicol Environ Saf 91:52–60

    Google Scholar 

  • Holden PA, Schimel JP, Godwin HA (2014) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78

    Google Scholar 

  • Hoshino A, Fujioka K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geis KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Google Scholar 

  • Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish-Review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118–119:141–151

    Google Scholar 

  • Jovanović B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palić D (2011) Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf 74:675–683

    Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensor for ecotoxicology of metal oxide nanoparticles: a mini review. Sensors 8:5153–5170

    Google Scholar 

  • Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Ganesh Arul, Manimegalai M, Subramanian P (2013) Biosynthesis of iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res 1(10):645–649

    Google Scholar 

  • Kavitha C, Ramesh M, Senthil Kumaran S, Audhi Lakshmi S (2012) Toxicity of Moringa oleifera seed extract on some hematological and biochemical profiles in a freshwater fish Cyprinus carpio. Exp Toxicol Pathol 64(7–8):681–687

    Google Scholar 

  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560

    Google Scholar 

  • Kerstin HR, Markus S (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13:1–8

    Google Scholar 

  • Kuhnel D, Buscha W, Meissner T, Springer A, Potthoff A, Richter V, Gelinskyc M, Scholz S, Schirmer K (2009) Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 93:91–99

    Google Scholar 

  • Larsson A, Bengtsson BE, Svanberg O (1976) Some haematological and biochemical effects of cadmium on fish. In: Lockwood APM (ed) Effects of pollutants on aquatic organisms. Cambridge University Press, Cambridge, pp 35–45

    Google Scholar 

  • Larsson Å, Lehtinen K-J, Haux C (1980) Biochemical and hematological effects of a titanium dioxide industrial effluent on fish. Bull Environ Contam Toxicol 25:427–435

    Google Scholar 

  • Lavanya S, Ramesh M, Kavitha C, Malarvizhi A (2011) Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82:977–985

    Google Scholar 

  • Lee JW, Kim JE, Shin YJ, Ryu JS, Eoma IC, Lee JS, Kim YH, Kim PJ, Choi KH, Lee BC (2014) Serum and ultra structure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 104:9–17

    Google Scholar 

  • Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Randak T (2010) Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem Biol Interact 183:98–104

    Google Scholar 

  • Linhua H, Zhenyu W, Baoshan X (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21:1459–1466

    Google Scholar 

  • Liu Y, Tourbinf M, Lachaize S, Guiraud P (2014) Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technol 255:149–156

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RI (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maruna RFL (1958) Quantitative estimation of sodium (Na+) and potassium (K+) in human serum by colorimetric method. Clin Chim Acta 2:581–585

    Google Scholar 

  • Mathan R, Kurunthachalam SK, Priya M (2010) Alterations in plasma electrolyte levels of a freshwater fish Cyprinus carpio exposed to acidic pH. Toxicol Environ Chem 92(1):149–157

    Google Scholar 

  • Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40

    Google Scholar 

  • Mazon AF, Fernandes MN (1999) Toxicity and differential tissue accumulation of copper in the tropical freshwater fish, Prochilodus scrofa (Prochilodontidae). Bull Environ Contam Toxicol 63:797–804

    Google Scholar 

  • Medina-Ramirez I, Louise-Liu J, Hernández-Ramirez A, Romo-Bernal C, Pedroza-Herrera G, Jáuregui-Rincon J, Gracia-Pinilla MA (2014) Synthesis, characterization, photocatalytic evaluation and toxicity studies of TiO2-Fe3+ nanocatalyts. J Materials Sci 49(15):5309–5323

    Google Scholar 

  • Min EY, Kang JC (2008) Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pestic Biochem Physiol 92:138–143

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Google Scholar 

  • Neenu S, Gareth JSJ, Romisa A, Shareen H (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358

    Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Google Scholar 

  • Nelson DA, Morris MW (1989) Basic methodology. Hematology and coagulation, part IV. In: Nelson DA, Henry JB (eds) Clinical diagnosis and management by laboratory methods, 7th edn. Saunder Company, Philadelphia, pp 578–724

    Google Scholar 

  • Nelson SM, Mahmoud T, Shapiro MBP, McIlroy DN, Stenkamp DL (2010) Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomed Nanotechnol Biol Med 6(1):93–102

    Google Scholar 

  • Noori A, Parivar K, Modaresi M, Messripour M, Yousefi MH, Amiri GR (2011) Effect of magnetic iron oxide nanoparticles on pregnancy and testicular development of mice. Afr J Biotechnol 10(7):1221–1227

    Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Google Scholar 

  • Oruc EO, Unea N, Tamer L (2002) Comparison of Na+/K+-ATPase activities and malondialdehyde contents in livers tissue for three fish species exposed to azinphosmethyl. Bull Environ Contam Toxicol 69:271–277

    Google Scholar 

  • Palaniappan PLRM, Pramod KS (2010) FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of Zebrafish (Danio rerio). Food Chem Toxicol 48:2337–2343

    Google Scholar 

  • Parvez S, Sayeed I, Raisuddin S (2006) Decreased gill ATPase activities in the freshwater fish Channa punctata (Bloch) exposed to a diluted paper mill effluent. Ecotoxicol Environ Saf 65(62):66

    Google Scholar 

  • Perkel JM (2004) Nanoscience is out of the bottle. Scientist 17(15):20–23

    Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200

    Google Scholar 

  • Pimpao CT, Zampronio AR, de Assis HCS (2007) Effects of deltamethrin on hematological parameters and enzymatic activity in Ancistrus multispinis (Pisces, Teleostei). Pestic Biochem Physiol 88:122–127

    Google Scholar 

  • Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR (2014) Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol Part C 160:75–85

    Google Scholar 

  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A, Leszczynska D, Leszczynski J (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178

    Google Scholar 

  • Ramesh M, Sankaran M, Veera-Gowtham V, Poopal RK (2014) Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chem Biol Interact 207:67–73

    Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    Google Scholar 

  • Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D (2014) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, ionoregulation and gill Na+/K+ ATPase activity. J King Saud Univ Sci 27:151–160

  • Rusia V, Sood SK (1992) Routine hematological tests. In: Mukerjee KL (ed) Medical laboratory technology. Tata McGraw Hill Publishing Company Limited, New Delhi, pp 252–258

    Google Scholar 

  • Saha S, Kaviraj A (2009) Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfish Heteropneustes fossilis. Chemosphere 74:1254–1259

    Google Scholar 

  • Sancho E, Ceron JJ, Ferrando MD (2000) Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46:81–86

    Google Scholar 

  • Saravanan M, Karthika S, Malarvizhi A, Ramesh M (2011a) Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. J Hazard Mater 195:188–194

    Google Scholar 

  • Saravanan M, Prabhu Kumar K, Ramesh M (2011b) Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pestic Biochem Physiol 100:206–211

    Google Scholar 

  • Scown TM, van Aerle R, Tyler CR (2010) Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40(7):653–670

    Google Scholar 

  • Seth N, Saxena KK (2003) Hematological responses in a freshwater fish Channa punctatus due to fenvalerate. Bull Environ Contam Toxicol 71:1192–1199

    Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37(6):1083–1097

    Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Aquat Toxicol 116–117:90–101

    Google Scholar 

  • Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR (2012) Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomed 7:2729–2737

    Google Scholar 

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429

    Google Scholar 

  • Shiosaka T, Okuda H, Fungi S (1971) Mechanisms of phophorylation of thymidine by the culture filtrate of Clostridium perfringens and rat liver extract. Biochim Biophys Acta 246:171–183

    Google Scholar 

  • Singh NN, Srivastava AK (2010) Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology 19:838–854

    Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Google Scholar 

  • Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37(6):1131–1142

    Google Scholar 

  • Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish-a review. Environ Sci Pollut Res 20:2133–2149

    Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18:312–336

    Google Scholar 

  • Suvetha L, Ramesh M, Saravanan M (2010) Influence of cypermethrin toxicity ionic regulation and gill Na+/K+-ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Pharmacol 29(1):44–49

    Google Scholar 

  • Taju G, Abdul Majeed S, Nambi KS, Hameed AS (2013) Development and characterization of cell line from the gill tissue of Catla catla (Hamilton, 1822) for toxicological studies. Chemosphere 90:2172–2180

    Google Scholar 

  • Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol Part C 161:41–52

    Google Scholar 

  • Talas ZS, Gulhan MF (2009) Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 72:1994–1998

    Google Scholar 

  • Tietz NW (1990) Clinical guide to laboratory test, 2nd edn. W.B. Saunders Co, Philadelphia, p 118

    Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Google Scholar 

  • Vaseashta A, Vaclavikova M, Vaseashta S, Gallio G, Roy P, Pummakarnchana O (2007) Nanostructures in environmental pollution detection, monitoring, and remediation. Sci Technol Adv Mater 8:47–59

    Google Scholar 

  • Velisek J, Dobsikova R, Svobodova Z, Modra H, Luskova V (2006) Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 76:992–998

    Google Scholar 

  • Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surf A 439:184–192

    Google Scholar 

  • Vutukuru SS (2003) Chromium induced alterations in some biochemical profiles of the Indian major carp, Labeo rohita (Hamilton). Bull Environ Contam Toxicol 70:118–123

    Google Scholar 

  • Wang Z, Zhao J, Li F, Gao D, Xing B (2009) Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67–73

    Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultra small super paramagnetic iron oxide: characterization of a new class of contrast materials for MR imaging. Radiology 175:489–493

    Google Scholar 

  • Witeska M (2004) The effect of toxic chemicals of blood cell morphology in fish. Fresen Environ Bull 13(12a):1379–1384

    Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger RS (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss), the effects of ionic Ag+. Aquat Toxicol 35(2):93–109

    Google Scholar 

  • Xu Z, Wang SL, Gao HW (2010) Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. J Hazard Mater 180:375–383

    Google Scholar 

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong LL, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Google Scholar 

  • Young DS, Pestaner LC, Gibberman V (1975) Effects of drugs on clinical laboratory tests. Clin Chem 21:1D–432D

    Google Scholar 

  • Zhu HJ, Jia YF, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, M., Suganya, R., Ramesh, M. et al. Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita . J Nanopart Res 17, 274 (2015). https://doi.org/10.1007/s11051-015-3082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3082-6

Keywords

Navigation