Skip to main content

Advertisement

Log in

H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H–TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H–TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g−1 at the current density of 0.5 A g−1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only ~13 % of SC loss after 2000 continuous charge–discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambade RB, Ambade SB, Shrestha NK, Nah YC, Han SH, Lee W, Lee SH (2013) Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun 49:2308–2310. doi:10.1039/c3cc00065f

    Article  Google Scholar 

  • Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog in Nat Sci Mater Int 23:245–255. doi:10.1016/j.pnsc.2013.04.001

    Article  Google Scholar 

  • Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750. doi:10.1126/science.1200448

    Article  Google Scholar 

  • Dai X, Shi W, Cai H, Li R, Yang G (2014) Facile preparation of the novel structured α-MnO2/Graphene nanocomposites and their electrochemical properties. Solid State Sci 27:17–23. doi:10.1016/j.solidstatesciences.2013.11.003

    Article  Google Scholar 

  • Gobal F, Faraji M (2013) Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor. J Electroanal Chem 691:51–56. doi:10.1016/j.jelechem.2012.12.008

    Article  Google Scholar 

  • Kundu M, Liu LF (2013) Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J Power Sources 243:676–681. doi:10.1016/j.jpowsour.2013.06.059

    Article  Google Scholar 

  • Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896

    Article  Google Scholar 

  • Li ZP, Wang JP, Liu XH, Liu S, Ou JF, Yang SR (2011) Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J Mater Chem 21:3397. doi:10.1039/c0jm02650f

    Article  Google Scholar 

  • Liao JY, Higgins D, Lui G, Chabot V, Xiao XC, Chen ZW (2013) Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett 13:5467–5473. doi:10.1021/nl4030159

    Article  Google Scholar 

  • Liu R, Lee SB (2008) MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130(10):2942–2943

    Article  Google Scholar 

  • Lu XH, WangM G, Zhai T, Yu MH, Gan JY, Tong YX, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696. doi:10.1021/nl300173j

    Article  Google Scholar 

  • Lu XH, Yu MH, Wang GM, Zhai T, Xie SL, Ling YC, Tong YX, Li Y (2013) H–TiO2@MnO2//H–TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272. doi:10.1002/adma.201203410

    Article  Google Scholar 

  • Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155. doi:10.1002/adma.201305851

    Article  Google Scholar 

  • Mai LQ, Dong F, Xu X, Luo YZ, An QY, Zhao YL, Pan J, Yang JN (2013a) Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett 13:740–745. doi:10.1021/nl304434v

    Article  Google Scholar 

  • Mai LQ, Minhas-Khan A, Tian XC, Hercule KM, Zhao YL, Lin X, Xu X (2013b) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923. doi:10.1038/ncomms3923

    Article  Google Scholar 

  • Ramadoss A, Kim SJ (2014) Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors. Int J Hydrogen Energy 39:12201–12212. doi:10.1016/j.ijhydene.2014.05.118

    Article  Google Scholar 

  • Salari M, Konstantinov K, Liu HK (2011) Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem 21:5128. doi:10.1039/c0jm04085a

    Article  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  • Sreekantan S, Hazan R, Lockman Z (2009) Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518:16–21. doi:10.1016/j.tsf.2009.06.002

    Article  Google Scholar 

  • Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  Google Scholar 

  • Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. doi:10.1039/c1cs15060j

    Article  Google Scholar 

  • Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. doi:10.1039/c0cs00127a

    Article  Google Scholar 

  • Wheeler DA, Ling YC, Dillon RJ, Fitzmorris RC, Dudzik CG, Zavodivker L, Rajh T, Dimitrijevic NM, Millhauser G, Bardeen C, Li Y, Zhang JZ (2013) Probing the nature of bandgap states in hydrogen-treated TiO2 nanowires. J Phys Chem C 117:26821–26830. doi:10.1021/jp409857j

    Article  Google Scholar 

  • Wu H, Xu C, Xu J, Lu LF, Fan ZY, Chen XY, Song Y, Li DD (2013) Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnol 24:455401. doi:10.1088/0957-4484/24/45/455401

    Article  Google Scholar 

  • Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY (2014) High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim Acta 116:129–136. doi:10.1016/j.electacta.2013.10.092

    Article  Google Scholar 

  • Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833. doi:10.1016/j.carbon.2010.06.047

    Article  Google Scholar 

  • Yan D, Zhang H, Li S, Zhu G, Wang Z, Xu H, Yu A (2014) Formation of ultrafine three-dimensional hierarchical birnessite-type MnO2 nanoflowers for supercapacitor. J Alloys Compd 607:245–250. doi:10.1016/j.jallcom.2014.04.077

    Article  Google Scholar 

  • Yang Y, Kim D, Yang M, Schmuki P (2011) Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor application. Chem Commun 47(27):7746–7748. doi:10.1039/c1cc11811k

    Article  Google Scholar 

  • Yang PH, Xiao X, Li YZ, Ding Y, Qiang PF, Tan XH, Mai WJ, Lin ZY, Wu WZ, Li TQ, Jin HY, Liu PY, Zhou J, Wong CQ, Wang ZL (2013) Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7(3):2617–2626

    Article  Google Scholar 

  • Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Bao ZN (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911. doi:10.1021/nl2013828

    Article  Google Scholar 

  • Zhai T, Lu XH, Ling YC, Yu MH, Wang GM, Liu TY, Liang CL, Tong YX, Li Y (2014a) A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O(13-x). Adv Mater 26:5869–5875. doi:10.1002/adma.201402041

    Article  Google Scholar 

  • Zhai T, Xie SL, Yu MH, Fang PP, Liang CL, Lu XH, Tong YX (2014b) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. doi:10.1016/j.nanoen.2014.06.013

    Article  Google Scholar 

  • Zhang ZH, Zhou ZF, Nie S, Wang HH, Peng HR, Li GC, Chen KZ (2014) Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J Power Sources 267:388–393. doi:10.1016/j.jpowsour.2014.05.121

    Article  Google Scholar 

  • Zheng HJ, Wang JX, Jia Y, Ma CA (2012) In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core–shell structured materials for supercapacitors. J Power Sources 216:508–514. doi:10.1016/j.jpowsour.2012.06.047

    Article  Google Scholar 

  • Zhou H, Zhang Y (2014) Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C 118:5626–5636. doi:10.1021/jp4082883

    Article  Google Scholar 

  • Zhu DD, Wang YD, Yuan GL, Xia H (2014) High-performance supercapacitor electrodes based on hierarchical Ti@MnO2 nanowire arrays. Chem Commun 50:2876–2878. doi:10.1039/c3cc49800j

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Zhejiang Natural Science Foundation (No. LY15B030007) and the National Natural Science Foundation of Zhejiang University of Technology (No. 1401101001408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, J., Fu, X., Zheng, H. et al. H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors. J Nanopart Res 17, 255 (2015). https://doi.org/10.1007/s11051-015-3060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3060-z

Keywords

Navigation