Skip to main content

Advertisement

Log in

Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  • Ajima K, Murakami T, Mizoguchi Y, Tsuchida K, Ichihashi T, Iijima S, Yudasaka M (2008) Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2:2057–2064

    Article  Google Scholar 

  • Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    Article  Google Scholar 

  • Azami T, Kasuya D, Yoshitake T et al (2007) Production of small single-wall carbon nanohorns by CO2 laser ablation of graphite in Ne-gas atmosphere. Carbon 45(6):1364–1367

    Article  Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  Google Scholar 

  • Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE (2000) Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 60:5117–5124

    Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  Google Scholar 

  • Chen H, Zheng Y, Tian G, Tian Y, Zeng X, Liu G, Liu K, Li L, Li Z, Mei L (2011) Oral delivery of DMAB-modified docetaxel-loaded PLGA-TPGS nanoparticles for cancer chemotherapy. Nanoscale Res Lett 6:1–10

    Google Scholar 

  • Das M, Singh RP, Datir SR, Jain S (2013) Intranuclear drug delivery and effective in vivo cancer therapy via estradiol–peg-appended multiwalled carbon nanotubes. Mol Pharm 10:3404–3416

    Article  Google Scholar 

  • Davies AM, Lara PN Jr, Mack PC, Gandara DR (2003) Docetaxel in non-small cell lung cancer: a review. Expert Opin Pharmacother 4:553–565

    Article  Google Scholar 

  • Depan D, Misra R (2013) The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure–function property relationship. Acta Biomater 9:6084–6094

    Article  Google Scholar 

  • DeStafeno JJ, Kim T (2007) Topical bevacizumab therapy for corneal neovascularization. Arch Ophthalmol Chic 125:834–836

    Article  Google Scholar 

  • Di Crescenzo A, Velluto D, Hubbell JA, Fontana A (2011) Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale 3:925–928

    Article  Google Scholar 

  • Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M (2008) Comparative in vivo biocompatibility study of single-and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602

    Article  Google Scholar 

  • Gelmon K (1994) The taxoids: paclitaxel and docetaxel. Lancet 344:1267–1272

    Article  Google Scholar 

  • Gianni C, Serena D, Delfo DA, Stefania M, Arianna M (2010) Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem Biophys Res Commun 394:405–411

    Article  Google Scholar 

  • Gianni C, Serena D, Simone N, Barbara M, Virgilio M, Mario G (2013) Biocompatibility of boron nitride nanotubes: An up-date of in vivo toxicological Investigation. Int J Pharm 444:85–88

    Article  Google Scholar 

  • Grinnell F, Feld M (1982) Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem 257:4888–4893

    Google Scholar 

  • Grinnell F, Feld M, Minter D (1980) Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell 19:517–525

    Article  Google Scholar 

  • Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152–2160

    Article  Google Scholar 

  • Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4 4(128):128ra139–128ra139

    Google Scholar 

  • Huang H, Yuan Q, Shah J, Misra R (2011) A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev 63:1332–1339

    Article  Google Scholar 

  • Iijima S, Yudasaka M, Yamada R et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309(3):165–170

    Article  Google Scholar 

  • Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L (2003) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Controlled Release 91:417–429

    Article  Google Scholar 

  • Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365:143–149

    Article  Google Scholar 

  • Jin M, Masako Y, Takeshi A, Yoshimi K, Sumio I (2008) Toxicity of single-walled carbon nanohorns. ACS Nano 2(2):213–226

    Article  Google Scholar 

  • Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips Hs, Ferrar N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423):841–844

    Article  Google Scholar 

  • Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  Google Scholar 

  • Liu J, Zahedi P, Zeng F, Allen C (2008a) Nano-sized assemblies of a PEG-docetaxel conjugate as a formulation strategy for docetaxel. J Phar Sci-US 97:3274–3290

    Article  Google Scholar 

  • Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008b) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105:1410–1415

    Article  Google Scholar 

  • Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Edit 48:7668–7672

    Article  Google Scholar 

  • Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:316–323

    Article  Google Scholar 

  • Ma X, Shu C, Guo J, Pang L, Su L, Fu D, Zhong W (2014) Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo. J Nanopart Res 16:1–14

    Google Scholar 

  • Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, Tomiak E, Al-Tweigeri T, Chap L, Juhos E (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352:2302–2313

    Article  Google Scholar 

  • Mi Y, Liu Y, Feng SS (2011) Formulation of docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS 2 k) micelles for targeted and synergistic chemotherapy. Biomaterials 32:4058–4066

    Article  Google Scholar 

  • Misra R, Depan D, Shah J (2012) Structure–process–functional property relationship of nanostructured carbon mediated cellular response for soft-tissue reconstruction and replacement. Acta Biomater 8:1908–1917

    Article  Google Scholar 

  • Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405

    Article  Google Scholar 

  • Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 3:407–414

    Article  Google Scholar 

  • Pagona G, Karousis N, Tagmatarchis N (2008) Aryl diazonium functionalization of carbon nanohorns. Carbon 46:604–610

    Article  Google Scholar 

  • Pang L, Xu J, Shu C, Guo J, Ma X, Liu Y, Zhong W (2014) Characterization and cancer cell targeted imaging properties of human antivascular endothelial growth factor monoclonal antibody conjugated CdTe/ZnS quantum dots. Luminescence 29:1177–1182

    Article  Google Scholar 

  • Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4:95

    Article  Google Scholar 

  • Pastuskovas CV, Mundo EE, Williams SP, Nayak TK, Ho J, Ulufatu S, Clark S, Ross S, Cheng E, Parsons-Reponte K (2012) Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol Cancer Ther 11:752–762

    Article  Google Scholar 

  • Pervaiz A, Mayeen UK, Yusoff MA (2015a) Physica Synthesis of boron nitride nanotubes by argon supported thermal Chem Vap Deposition. Physica E.67:33–37

  • Pervaiz A, Mayeen UK, Yusoff MA (2015b) Synthesis of highly crystalline multilayers structures of 10 BNNTs as a potential neutron sensing element. Ceram Int 41:4544–4548

  • Pervaiz A, Mayeen UK, Yusoff MA (2015c) Effective synthesis of vertically aligned boron nitride nanotubes via a simple CCVD. Mater Manuf Process 30:706–710

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release 1. Fickian and anomalous release from swellable devices. J.controlled Release 5:37–42

    Article  Google Scholar 

  • Roché H, Fumoleau P, Spielmann M, Canon JL, Delozier T, Serin D, Symann M, Kerbrat P, Soulié P, Eichler F (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol 24:5664–5671

    Article  Google Scholar 

  • Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, Li Z, Chen C, Hou L, Zhang C (2013) PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 34:251–261

    Article  Google Scholar 

  • Syrigos KN, Konstantinou M, Sepsas E, Papamichales G, Loullias A, Belenis I, Skottis I, Charpidou A, Roussos C (2007) Biweekly administration of docetaxel and gemcitabine as adjuvant therapy for stage II and IIIA non-small cell lung cancer: a phase II study. Anticancer Res 27:2887–2892

    Google Scholar 

  • Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Wang L, Zhang M, Zhang N, Shi J, Zhang H, Li M, Lu C, Zhang Z (2011) Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int J Nanomed 6:2641–2652

    Article  Google Scholar 

  • Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750

    Article  Google Scholar 

  • Yamada KM, Olden K (1978) Fibronectins—adhesive glycoproteins of cell surface and blood. Nature 275:179–184

    Article  Google Scholar 

  • Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem. Commun 29:4447–4449

    Article  Google Scholar 

  • Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z (2010) In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5:516–522

    Article  Google Scholar 

  • Yang M, Wada M, Zhang M, Kostarelos K, Yuge R, Iijima S, Masuda M, Yudasaka M (2013) A high poly (ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly (ethylene glycol) and macrophage uptake. Acta Biomater 9:4744–4753

    Article  Google Scholar 

  • Yardley DA, Burris HA III, Farley CP, Barton JH, Peacock NW, Spigel DR, Greco FA, Hainsworth JD (2008) A phase II feasibility trial of dose-dense docetaxel followed by doxorubicin/cyclophosphamide as adjuvant or neoadjuvant treatment for women with node-positive or high-risk node-negative breast cancer. Clin Breast Cancer 8:242–248

    Article  Google Scholar 

  • Zhang M, Yudasaka M, Ajima K, Miyawaki J, Iijima S (2007) Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable chemical modifications with proteins to enhance biocompatibility. ACS Nano 1:265–272

    Article  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047

    Article  Google Scholar 

  • Zucker MB, Mosesson MW, Broekman MJ, Kaplan KL (1979) Release of platelet fibronectin (cold-insoluble globulin) from alpha granules induced by thrombin or collagen; lack of requirement for plasma fibronectin in ADP-induced platelet aggregation. Blood 54:8–12

    Google Scholar 

Download references

Acknowledgments

The work was funded by the National Natural Science Foundation of China (No. 81173023) and supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We wish to thank Professor Yu Liu, China Pharmaceutical University for their anti-VEGF monoclonal antibody. We appreciate Dr. Degang Fu for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Li, N., Shu, C. et al. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity. J Nanopart Res 17, 207 (2015). https://doi.org/10.1007/s11051-015-3015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3015-4

Keywords

Navigation