Skip to main content
Log in

Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiri H, Bordonali L, Lascialfari A, Wan S, Monopoli MP, Lynch I, Laurent S, Mahmoudi M (2013) Protein corona affects the relaxativity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 5:8656–8666

    Article  Google Scholar 

  • Blanco-Andujar C, Ortega D, Southern P et al (2014) High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale. doi:10.1039/c4nr06239f

    Google Scholar 

  • Calero M, Gutiérrrez L, Salas G, Luengo Y, Lázaro A, Acedo P, Morales MP, Miranda R, Villanueva A (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine 10:733–743

    Article  Google Scholar 

  • Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921

    Article  Google Scholar 

  • Coffey WT, Kalmykov YP (2012) Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J Appl Phys 112:121301

    Article  Google Scholar 

  • Costo R, Bello V, Robic C, Port M, Marco JF, Morales MP, Veintemillas-Verdaguer S (2012) Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir 28:178–185

  • de la Presa P, Luengo Y, Multigner M, Costo R, Morales M, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610

    Article  Google Scholar 

  • Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411

    Article  Google Scholar 

  • Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2:214–228

    Article  Google Scholar 

  • Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    Article  Google Scholar 

  • Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    Article  Google Scholar 

  • Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459

    Article  Google Scholar 

  • Javed Y, Lartigue L, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D (2014) Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small 10:3325–3337

    Article  Google Scholar 

  • Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AA, Luciani N, Clément O, Flaud P, Singh JV, Decuzzi P, Pellegrino T, Wilhelm C, Gazeau F (2014) Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. ACS Nano 8:4268–4283

  • Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I (2014) High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature increases in the tumor area. Pharm Res. doi:10.1007/s11095-014-1417-0

    Google Scholar 

  • Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  Google Scholar 

  • Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89:014403

    Article  Google Scholar 

  • Levy M, Wilhelm C, Luciani N, Deveaux V, Gendron F, Luciani A, Devaud M, Gazeau F (2011) Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale 3:4402

    Article  Google Scholar 

  • Lévy M, Gazeau F, Bacri JC, Wilhelm C, Devaud M (2011) Modeling magnetic nanoparticle dipole–dipole interactions inside living cells. Phys Rev B 84:075480

    Article  Google Scholar 

  • Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F (2012) How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging 7:373

    Article  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  Google Scholar 

  • Mamiya H (2013) Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J Nanomater 2013:752973

    Article  Google Scholar 

  • Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe–MgO core-shell nanoparticles by tuning dipole-dipole interactions. Adv Funct Mater 22:3737–3744

    Article  Google Scholar 

  • Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, González-Carreño T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applicationsi n biomedicine. J Phys D Appl Phys 42:224002

    Article  Google Scholar 

  • Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22:21065–21075

    Article  Google Scholar 

  • Salas G, Veintemillas-Verdaguer S, Morales MP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth 29:768–777

    Article  Google Scholar 

  • Salas G, Camarero J, Cabrera D, Takacs H, Varela M, Ludwig R, Dähring H, Hilger I, Miranda R, Morales MP, Teran FJ (2014) Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. J Phys Chem C 118:19985–19994

    Article  Google Scholar 

  • Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Del Puero MP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934

    Article  Google Scholar 

  • Soukup D, Moise S, Céspedes E, Dobson J, Telling ND (2015) In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano 9:231–240

    Article  Google Scholar 

  • Teran FJ, Casado C, Mikuszeit N, Salas G, Bollero A, Morales MP, Camarero J, Miranda R (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413

    Article  Google Scholar 

  • Vergés MA, Costo R, Roca AG, Marco JF, Goya GF, Serna CJ, Morales MP (2008) Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J Phys D 41:134003

    Article  Google Scholar 

  • Wilkinson K, Ekstrand-Hammarström B, Ahlinder L, Guldevall K, Pazik R, Kępiński L, Kvashnina KO, Butorin SM, Brismar H, Önfelt B et al (2012) Visualization of custom-tailored iron oxide nanoparticles chemistry, uptake, and toxicity. Nanoscale 4:7383–7393

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by European Commission (MULTIFUN, No. 262943), Spanish Ministry of Economy and Competitiveness (MAT2013-47395-C4-3-R), and Madrid Regional Government (NANOFRONTMAG-CM S2013/MIT-2850). F. J. T acknowledges financial support from Ramon y Cajal subprogram (RYC-2011-09617). We thank Dr. Gorka Salas for providing iron oxide nanoparticles, and Leonor de la Cueva and Rebeca Amaro for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Teran.

Additional information

Guest Editor: Liudmyla Rieznichenko

This article is part of the topical collection on Engineered Bioinspired Nanomaterials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, D., Camarero, J., Ortega, D. et al. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia. J Nanopart Res 17, 121 (2015). https://doi.org/10.1007/s11051-015-2921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2921-9

Keywords

Navigation