Skip to main content
Log in

Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A bramble-like ZnO array with a special three-dimensional (3D) nanostructure was successfully fabricated on Zn foil through a facile two-step hydrothermal process. A possible growth mechanism of the bramble-like ZnO array was proposed. In the first step of hydrothermal process, the crystal nucleus of Zn(OH) 2−4 generated by the zinc atoms and OH ions fold together preferentially along the positive polar (0001) to form the needle-like ZnO array. In the second step of hydrothermal process, the crystal nuclei of Zn(OH) 2−4 adjust their posture to keep their c-axes vertical to the perching sites due to the sufficient environmental force and further grow preferentially along the (0001) direction so as to form bramble-like ZnO array. The electrochemical properties of the needle- and bramble-like ZnO arrays as anode materials for lithium-ion batteries were investigated and compared. The results show that the bramble-like ZnO material exhibits much better lithium storage properties than the needle-like ZnO sample. Reasons for the enhanced electrochemical performance of the bramble-like ZnO material were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad M, Shi YY, Nisar A, Sun HY, Shen WC, Wei M, Zhu J (2011) Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J Mater Chem 21:7723–7729. doi:10.1039/C1JM10720H

    Article  Google Scholar 

  • Ahmad M, Shi YY, Sun HY, Shen WC, Zhu J (2012) SnO2/ZnO composite structure for the lithium-ion battery electrode. J Solid State Chem 196:326–331. doi:10.1016/j.jssc.2012.06.032

    Article  Google Scholar 

  • Gao XP, Zheng ZF, Zhu HY, Pan GL, Bao JL, Wu F, Song DY (2004) Rotor-like ZnO by epitaxial growth under hydrothermal conditions. Chem Commun 12:1428–1429. doi:10.1039/B403252G

    Article  Google Scholar 

  • Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11:1320–1324. doi:10.1016/j.elecom.2009.04.036

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899. doi:10.1126/science.1060367

    Article  Google Scholar 

  • Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965. doi:10.1016/j.electacta.2011.03.129

    Article  Google Scholar 

  • Huang XH, Wu JB, Lin Y, Guo RQ (2012) ZnO microrod arrays grown on copper substrates as anode materials for lithium ion batteries. Int J Electrochem Sci 7:6611–6621

    Google Scholar 

  • Huang XH, Guo RQ, Wu JB, Zhang P (2014) Mesoporous ZnO nanosheets for lithium ion batteries. Mater Lett 122:82–85. doi:10.1016/j.matlet.2014.02.012

    Article  Google Scholar 

  • Jiang P, Zhou JJ, Fang HF, Wang CY, Wang ZL, Xie SS (2007) Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater 17:1303–1310. doi:10.1002/adfm.200600390

    Article  Google Scholar 

  • Lee JH, Hon MH, Chung YW, Leu IC (2011) The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery. Appl Phys A 102:545–550. doi:10.1007/s00339-010-6097-y

    Article  Google Scholar 

  • Liang HF, Chen W, Yao Y, Wang Z, Yang Y (2014) Hydrothermal synthesis, self-assembly and electrochemical performance of α-Fe2O3 microspheres for lithium ion batteries. Ceram Int 40:10283–10290. doi:10.1016/j.ceramint.2014.02.120

    Article  Google Scholar 

  • Liu JP, Li YY, Ding RM, Jiang J, Hu YY, Ji XX, Chi QB, Zhu ZH, Hong XT (2009) Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J Phys Chem C 113:5336–5339. doi:10.1021/jp900427c

    Article  Google Scholar 

  • Pan QM, Qin LM, Liu J, Wang HB (2010) Flower-like ZnO–NiO–C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim Acta 55:5780–5785. doi:10.1016/j.electacta.2010.05.017

    Article  Google Scholar 

  • Park WI, Yi GC, Kim M, Pennycook SJ (2002) ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater 14:1841–1843. doi:10.1002/adma.200290015

    Article  Google Scholar 

  • Park KT, Xia F, Kim SW, Kim SB, Song T, Paik U, Park WI (2012) Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J Phys Chem C 117:1037–1043. doi:10.1021/jp310428r

    Article  Google Scholar 

  • Shen XY, Mu DB, Chen S, Wu BR, Wu F (2013) Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:3118–3125. doi:10.1021/am400020n

    Article  Google Scholar 

  • Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP (2009) Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim Acta 54:2851–2855. doi:10.1016/j.electacta.2008.11.019

    Article  Google Scholar 

  • Wang J, Du N, Zhang H, Yu J, Yang D (2011) Layer-by-layer assembly synthesis of ZnO/SnO2 composite nanowire arrays as high-performance anode for lithium-ion batteries. Mater Res Bull 46:2378–2384. doi:10.1016/j.materresbull.2011.08.045

    Article  Google Scholar 

  • Wang G, Wang H, Cai S, Bai J, Ren Z, Bai J (2013) Synthesis and evaluation of carbon-coated Fe2O3 loaded on graphene nanosheets as an anode material for high performance lithium ion batteries. J Power Sources 239:37–44. doi:10.1016/j.jpowsour.2013.03.105

    Article  Google Scholar 

  • Wang X, Wang G, Zhai G, Wang H (2014) Preparation and electrochemical evaluation of NiO nanoplatelet-based materials for lithium storage. J Mater Res 29:1393–1400. doi:10.1557/jmr.2014.154

    Article  Google Scholar 

  • Wen ZG, Zheng F, Yu HC, Jiang ZR, Liu KL (2013a) Hydrothermal synthesis of flowerlike SnO2 nanorod bundles and their application for lithium ion battery. Mater Charact 76:1–5. doi:10.1016/j.matchar.2012.11.011

    Article  Google Scholar 

  • Wen ZH, Lu GH, Mao S, Kim H, Cui SM, Yu KH, Huang XK, Hurley PT, Mao O, Chen JH (2013b) Silicon nanotube anode for lithium-ion batteries. Electrochem Commun 29:67–70. doi:10.1016/j.elecom.2013.01.015

    Article  Google Scholar 

  • Wu MS, Chang HW (2013) Self-assembly of NiO-coated ZnO nanorod electrodes with core-shell nanostructures as anode materials for rechargeable lithium-ion batteries. J Phys Chem C 117:2590–2599. doi:10.1021/jp3079327

    Article  Google Scholar 

  • Xie QS, Zhang XQ, Wu XB, Wu HY, Liu X, Yue GH, Yang Y, Peng DL (2014) Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim Acta 125:659–665. doi:10.1016/j.electacta.2014.02.003

    Article  Google Scholar 

  • Xu Y, Li YJ, Liu SQ, Li HL, Liu YN (2012) Nanoparticle Li2FeSiO4 as anode material for lithium-ion batteries. J Power Sources 220:103–107. doi:10.1016/j.jpowsour.2012.07.130

    Article  Google Scholar 

  • Yan GF, Fang HS, Li GS, Li LP, Zhao HJ, Yang Y (2009a) Improved electrochemical performance of Mg-doped ZnO thin film as anode material for lithium ion batteries. Chin J Struct Chem 28:409–413

    Google Scholar 

  • Yan JF, Zhang ZY, You TG, Zhao W, Yun JN (2009b) Hydrothermal synthesis and dielectric properties of chrysanthemum-like ZnO particles. Chin Phys B 18:4019–4024. doi:10.1088/1674-1056/18/9/067

    Article  Google Scholar 

  • Yan JF, You TG, Zhang ZY, Tian JX, Lei JM, Nan XJ (2013) Preparation and growth mechanism of chrysanthemum-like ZnO nanowire clusters. J Nanosci Nanotechnol 13:1418–1422. doi:10.1166/jnn.2013.5956

    Article  Google Scholar 

  • Yengantiwar A, Sharma R, Game O, Banpurkar A (2011) Growth of aligned ZnO nanorods array on ITO for dye sensitized solar cell. Curr Appl Phys 11:S113–S116. doi:10.1016/j.cap.2010.11.111

    Article  Google Scholar 

  • You TG, Yan JF, Zhang ZY, Li J, Tian JX, Yun JN, Zhao W (2012) Fabrication and optical properties of needle-like ZnO array by a simple hydrothermal process. Mater Lett 66:246–249. doi:10.1016/j.matlet.2011.08.071

    Article  Google Scholar 

  • Zhan L, Wang S, Ding LX, Li Z, Wang H (2014) Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim Acta 135:35–41. doi:10.1016/j.electacta.2014.04.139

    Article  Google Scholar 

  • Zhang XN, Pan GL, Li GR, Qu JQ, Gao XP (2007) Si–Si3N4 composites as anode materials for lithium ion batteries. Solid State Ion 178:1107–1112. doi:10.1016/j.ssi.2007.05.011

    Article  Google Scholar 

  • Zhang M, Jin Y, Wen Q, Chen C, Jia M (2013) In situ synthesis of CoFe2O4–Co rods as anode materials for lithium ion batteries. Appl Surf Sci 277:25–29. doi:10.1016/j.apsusc.2013.03.095

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 60976069 and 21061130551), the Natural Science Foundation of ShaanXi Province, China (No. 2010JM6008), and the Xi’an Scientific and Technological Project, China (No. CXY1008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wang, G., Wang, H. et al. Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries. J Nanopart Res 17, 52 (2015). https://doi.org/10.1007/s11051-015-2870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2870-3

Keywords

Navigation