Skip to main content
Log in

Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Specific features of structural self-organization of C60 fullerene (1 nm size range), antitumor antibiotic doxorubicin (Dox) and their complex in physiological solution (0.9 % NaCl) have been investigated by means of atomic-force microscopy, dynamic light scattering, and small-angle X-ray scattering. Significant ordering of the mixed system, C60 + Dox, was observed, suggesting the complexation between these drugs, and giving insight into the mechanism of enhancement of Dox antitumor effect on simultaneous administration with C60 fullerene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amer MS, Elliott JA, Maguire JF, Windle AH (2005) Calculations of the Raman spectra of C60 interacting with water molecules. Chem Phys Lett 411:395–398

    Article  Google Scholar 

  • Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364:8–17

    Article  Google Scholar 

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM et al (2010) Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473

    Article  Google Scholar 

  • Avdeev MV, Khokhryakov AA, Tropin TV, Andrievsky GV, Klochkov VK, Derevyanchenko LI et al (2004) Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir 20:4363–4368

    Article  Google Scholar 

  • Balch AL, Olmstead MM (1999) Structural chemistry of supramolecular assemblies that place flat molecular surfaces around the curved exteriors of fullerenes. Coord Chem Rev 185–186:601–617

    Article  Google Scholar 

  • Boyd PDW, Reed CA (2005) Fullerene-porphyrine constructs. Acc Chem Res 38:235–242

    Article  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    Article  Google Scholar 

  • Buchelnikov AS, Evstigneev MP (2014) Quantitative correlation of the in vitro biological effect with parameters of molecular complexation in mutagen-interceptor systems. J Theor Biol 357:268–271

    Article  Google Scholar 

  • Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34:106–135

    Article  Google Scholar 

  • Cataldo F, Da Ros T (eds) (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Carbon materials: chemistry and physics, vol 1. Springer, Dordrecht

  • Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43:7270–7276

    Article  Google Scholar 

  • Dallavalle M, Leonzio M, Calvaresi M, Zerbetto F (2014) Explaining fullerene dispersion by using micellar solutions. ChemPhysChem 15:2998–3005

    Article  Google Scholar 

  • Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir 17:6013–6017

    Article  Google Scholar 

  • Evstigneev MP (2014) Hetero-association of aromatic molecules in aqueous solution. Int Rev Phys Chem 33:229–273

    Article  Google Scholar 

  • Evstigneev MP, Buchelnikov AS, Voronin DP, Rubin YuV, Belous LF, Prylutskyy YuI et al (2013) Complexation of C60 fullerene with aromatic drugs. ChemPhysChem 14:568–578

    Article  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Article  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [C60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  Google Scholar 

  • Hirsch A, Brettreich M, Wudl F (2005) Fullerenes: chemistry and reactions. Wiley, New York

    Google Scholar 

  • Labille J, Masion A, Ziarelly F, Rose J, Brant J, Villieras F et al (2009) Hydration and dispersion of C60 in aqueous systems: the nature of water-fullerene interactions. Langmuir 25:11232–11235

    Article  Google Scholar 

  • Montellano A, Da Ros T, Bianco A, Prato M (2011) Fullerene C60 as multifunctional system for drug and gene delivery. Nanoscale 3:4035–4041

    Article  Google Scholar 

  • Panchuk RR, Prylutska SV, Chumak VV, Skorokhyd NR, Lehka LV, Evstigneev MP et al (2015) Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol 11:1139–1152

    Article  Google Scholar 

  • Piosik J, Zdunek M, Kapuscinski J (2002) The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents, part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone. Biochem Pharmacol 63:635–646

    Article  Google Scholar 

  • Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YuI, Ritter U, Scharff P (2008) Anti-oxidant properties of C60 fullerenes in vitro. Fuller Nanotub Carbon Nanostruct 16:698–705

    Article  Google Scholar 

  • Prylutska SV, Burlaka AP, Klymenko PP, Grynyuk II, Prylutskyy YuI, Schuetze Ch et al (2011) Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol 2:105–110

    Article  Google Scholar 

  • Prylutska S, Bilyy R, Overchuk M, Bychko A, Andreichenko K, Stoika R et al (2012) Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J Biomed Nanotechnol 8:522–527

    Article  Google Scholar 

  • Prylutska S, Grynyuk I, Matyshevska O, Prylutskyy Y, Evstigneev M, Scharff P, Ritter U (2014) C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R D 14:333–340

    Article  Google Scholar 

  • Prylutskyy YuI, Buchelnikov AS, Voronin DP, Kostjukov VV, Ritter U, Parkinson JA et al (2013) C60 fullerene aggregation in aqueous solution. Phys Chem Chem Phys 15:9351–9360

    Article  Google Scholar 

  • Prylutskyy YuI, Petrenko VI, Ivankov OI, Kyzyma OA, Bulavin LA, Litsis OO et al (2014a) On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30:3967–3970

    Article  Google Scholar 

  • Prylutskyy YuI, Evstigneev MP, Pashkova IS, Wyrzykowski D, Woziwodzka A, Gołuński G et al (2014b) Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys 16:23164–23172

    Article  Google Scholar 

  • Skamrova GB, Laponogov I, Buchelnikov AS, Shckorbatov YG, Prylutska SV, Ritter U et al (2014) Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. Eur Biophys J 43:265–276

    Article  Google Scholar 

  • Traganos F, Kapuscinski J, Darzynkiewicz Z (1991) Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res 51:3682–3689

    Google Scholar 

  • Woziwodzka A, Gołuński G, Wyrzykowski D, Kaźmierkiewicz R, Piosik J (2013) Caffeine and other methylxanthines as interceptors of food-borne aromatic mutagens: inhibition of Trp-P-1 and Trp-P-2 mutagenic activity. Chem Res Toxicol 26:1660–1673

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by Russian Science Fund, Project No. 14-14-00328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Evstigneev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prylutskyy, Y.I., Evstigneev, M.P., Cherepanov, V.V. et al. Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents. J Nanopart Res 17, 45 (2015). https://doi.org/10.1007/s11051-015-2867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2867-y

Keywords

Navigation