Skip to main content
Log in

CdS x Se1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructured TiO2 translucent films with different architectures including TiO2 nanotube (NT), TiO2 nanowire (NW), and TiO2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO2 architectures are sensitized with CdS x Se1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se1−x QDs onto TiO2 films. These CdS x Se1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO2 NW/NT, TiO2 NW, and TiO2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se1−x /TiO2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO2 NW/NT architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker DR, Kamat PV (2009) Photosensitization of TiO2 Nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811. doi:10.1002/adfm.200801173

    Article  Google Scholar 

  • Balis N, Dracopoulos V, Bourikas K, Lianos P (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91:246–252. doi:10.1016/j.electacta.2013.01.004

    Article  Google Scholar 

  • Beard MC, Luther JM, Semonin OE, Nozik AJ (2012) Third generation photovoltaics based on multiple exciton generation in quantum confined semicondutors. Acc Chem Res 46:1252–1260. doi:10.1021/ar3001958

    Article  Google Scholar 

  • Bisquert J, Zaban A, Greenshtein M, Mora-Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:13550–13559. doi:10.1021/ja047311k

    Article  Google Scholar 

  • Chakrapani V, Baker D, Kamat PV (2011) Understanding the role of the sulfide redox couple (S2−/Sn2−) in quantum dot-sensitized solar cells. J Am Chem Soc 133:9607–9615. doi:10.1021/ja203131b

    Article  Google Scholar 

  • Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314. doi:10.1021/jp900336e

    Article  Google Scholar 

  • Chen C, Li F, Li G, Tan F, Li S, Ling L (2013) Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. J Mater Sci 49:1868–1874. doi:10.1007/s10853-013-7875-7

    Article  Google Scholar 

  • Cheng S, Fu W, Yang H, Zhang L, Ma J, Zhao H, Sun M, Yang L (2012) Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes. J Phys Chem C 116:2615–2621. doi:10.1021/jp209258r

    Article  Google Scholar 

  • Choi Y, Seol M, Kim W, Yong K (2014) Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dots-sensitized solar cell application. J Phys Chem C 118:5664–5670. doi:10.1021/jp411221q

    Article  Google Scholar 

  • Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Highly efficient multiple exction generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–871. doi:10.1021/nl0502672

    Article  Google Scholar 

  • Gao J, Perkins CL, Luther JM, Hanna MC, Chen HY, Semonin OE, Nozik AJ, Ellingson RJ, Beard MC (2011) n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett 11:3263–3266. doi:10.1021/nl2015729

    Article  Google Scholar 

  • Gertman R, Osherov A, Golan Y, Visoly-Fisher I (2014) Chemical bath deposited PbS thin film on ZnO nanowires for photovoltaic applications. Thin Solid Films 550:149–155. doi:10.1016/j.tsf.2013.10.160

    Article  Google Scholar 

  • González-Pedro V, Xu X, Mora-Será I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790. doi:10.1021/nn101534y

    Article  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  • Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol, C 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  • Han Z, Wei L, Tang L, Chen C, Pan H, Chen J (2013) Aligned CdSe@ZnO flower-rod core-shell nanocable as photovoltaic application. J Power Sources 239:546–552. doi:10.1016/j.jpowsour.2013.02.081

    Article  Google Scholar 

  • Hwang JY, Lee SA, Lee YH, Seok SI (2010) Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control. ACS Appl Mater Interfaces 2:1343–1348. doi:10.1021/am900917n

    Article  Google Scholar 

  • Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113:4254–4256. doi:10.1021/jp900302b

    Article  Google Scholar 

  • Joseph DP, Kovendhan M, Suthanthiraraj SA, Maruthamuthu P, Venkateswaran C (2011) Fabrication of dye sensitized solar cell using Cr doped Cu-Zn-Se type chalcopyrite thin film. Phys Status Solidi A 9:2215–2219. doi:10.1002/pssa.201026368

    Article  Google Scholar 

  • Kalanur SS, Chae SY, Joo OS (2013) Transparent Cu1.8 and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim Acta 103:91–95. doi:10.1016/j.electacta.2013.04.041

    Article  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753. doi:10.1021/jp806791s

    Article  Google Scholar 

  • Kamat PV (2012) TiO2 nanostructures: recent physical chemistry advances. J Phys Chem C 116:11849–11851. doi:10.1021/jp305026h

    Article  Google Scholar 

  • Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918. doi:10.1021/jz400052e

    Article  Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015. doi:10.1021/ja0782706

    Article  Google Scholar 

  • Kovendhan M, Joseph DP, Manimuthu P, Ganesan S, Sambasivam S, Maruthamuthu P, Suthanthiraraj SA, Venkateswaran C, Mohan R (2011) Spray deposited Nb2O5 thin film electrodes for fabrication of dye sensitized solar cells. Trans IIM 64:185–188. doi:10.1007/s12666-011-0036-2

    Google Scholar 

  • Kovendhan M, Joseph DP, Manimuthu P, Sanmbasivam S, Karthick SN, Vijayarangamuthu K, Sendilkumar A, Asokan K, Kim HJ, Choi BC, Venkateswaran C, Mohan R (2013) ‘Li’ doping induced physicochemical property modifications of MoO3 thin films. Appl Surf Sci 284:624–633. doi:10.1016/j.apsusc.2013.07.143

    Article  Google Scholar 

  • Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609. doi:10.1002/adfm.200800940

    Article  Google Scholar 

  • Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009a) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227. doi:10.1021/nl902438d

    Article  Google Scholar 

  • Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Seok SI, Grätzel M, Nazeeruddin MK (2009b) Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt comlex as hole mediator. Langmuir 25:7602–7608. doi:10.1021/la900247r

    Article  Google Scholar 

  • Li Z, Yu L, Liu Y, Sun S (2014a) CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim Acta 129:379–388. doi:10.1016/j.electacta.2014.02.145

    Article  Google Scholar 

  • Li Z, Yu L, Liu Y, Sun S (2014b) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49:6392–6403. doi:10.1007/s10853-014-8366-1

    Article  Google Scholar 

  • Lim JH, Choi J (2007) Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small 3:1504–1507. doi:10.1002/smll.200700114

    Article  Google Scholar 

  • Luan X, Guan D, Wang Y (2012) Facile synthesis and morphology control of bamboo-type TiO2 nanotube arrays for high-efficiency dye-sensitized solar cells. J Phys Chem C 116:14257–14263. doi:10.1021/jp305280q

    Article  Google Scholar 

  • Mao W, Guo J, Yang W, Wang C, He J, Chen J (2007) Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology 18:485611. doi:10.1088/0957-4484/18/48/485611

    Article  Google Scholar 

  • Meyer GJ (2010) The 2010 millennium technology grand prize: dye-sensitized solar cells. ACS Nano 4:4337–4343. doi:10.1021/nn101591h

    Article  Google Scholar 

  • Moon SJ, Itzhaik Y, Yum JH, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2S3-based Mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524–1527. doi:10.1021/jz3004602

    Article  Google Scholar 

  • Nozik AJ (2008) Multiple excition generation in semiconductor quantum dots. Chem Phys Lett 457:3–11. doi:10.1016/j.cplett.2008.03.094

    Article  Google Scholar 

  • Nozik AJ, Miller JR (2010) Introduction to solar photon conversion. Chem Rev 110:6443–6445. doi:10.1021/cr1003419

    Article  Google Scholar 

  • Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple excition generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890. doi:10.1021/cr900289f

    Article  Google Scholar 

  • Pan J, Utama MI, Zhang Q, Liu X, Peng B, Wong LM, Sum TC, Wang S, Xiong Q (2012) Composition-tunable vertically aligned CdS x Se1−x nanowire arrays via van der waals epitaxy: investigation of optical properties and photocatalytic behavior. Adv Mater 24:4151–4156. doi:10.1002/adma.201104996

    Article  Google Scholar 

  • Pattantyus-Abraham AG, Kammer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH (2010) Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4:3374–3380. doi:10.1021/nn100335g

    Article  Google Scholar 

  • Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim SK, Prabakar K, Kim HJ (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446. doi:10.1016/j.jpowsour.2013.09.076

    Article  Google Scholar 

  • Rogach AL, Kornowski A, Gao M, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069. doi:10.1021/jp984833b

    Article  Google Scholar 

  • Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. Chem Phys Chem 11:2290–2304. doi:10.1002/cphc.201000069

    Google Scholar 

  • Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134:2508–2511. doi:10.1021/ja211224s

    Article  Google Scholar 

  • Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359. doi:10.1021/jp809385x

    Article  Google Scholar 

  • Sharmoukh W, Allam NK (2012) TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. ACS Appl Mater Interfaces 4:4413–4418. doi:10.1021/am301089t

    Article  Google Scholar 

  • Shin Y, Lee S (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173. doi:10.1021/nl801422w

    Article  Google Scholar 

  • Song X, Wang M, Deng J, Yang Z, Ran C, Zhang X, Yao X (2013) One-step preparation and assembly of aqueous colloidal CdS x Se1−x nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces 5:5139–5148. doi:10.1021/am4009924

    Article  Google Scholar 

  • Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125. doi:10.1021/ja0777741

    Article  Google Scholar 

  • Swafford LA, Weigand LA, Bowers MJ, McBride JR, Rapaport JL, Watt TL, Dixit SK, Feldman LC, Rosenthal SJ (2006) Homogeneously alloyed CdS x Se1−x nanocrystals: synthesis, characterization, and composition/size-dependent band gap. J Am Chem Soc 128:12299–12306. doi:10.1021/ja063939e

    Article  Google Scholar 

  • Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J Phys Chem Lett 3:1885–1893. doi:10.1021/jz3004602

    Article  Google Scholar 

  • Yu L, Li Z, Liu Y, Cheng F, Sun S (2014a) Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl Surf Sci 309:255–262. doi:10.1016/j.apsusc.2014.05.023

    Article  Google Scholar 

  • Yu L, Li Z, Liu Y, Cheng F, Sun S (2014b) Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application. Appl Surf Sci 305:359–365. doi:10.1016/j.apsusc.2014.03.090

    Article  Google Scholar 

  • Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem Phys Chem 4:859–864. doi:10.1002/cphc.200200615

    Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotube arrays. Nano Lett 7:69–74. doi:10.1021/nl062000o

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support for this work from the Key Project of Tianjin Sci-Tech Support Program (No. 08ZCKFH01400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2,458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, L., Liu, Y. et al. CdS x Se1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film. J Nanopart Res 16, 2779 (2014). https://doi.org/10.1007/s11051-014-2779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2779-2

Keywords

Navigation