Skip to main content
Log in

Ligands influence a carbon nanotube penetration through a lipid bilayer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The interactions between nanomaterials and biological membranes are important for the safe use of nanomaterials. We explore the nano–bio interface by studying the penetration of a carbon nanotube (CNT) coated with ligands through a lipid bilayer. With a dissipative particle dynamics model, the mechanism of ligands influencing nano–bio interaction is analyzed. The CNTs with different ligands are tested. The simulation shows that the increase of the total number of ligand particles decreases the capability of a CNT penetrating through a membrane. For the CNTs with the same number of ligand particles, the arrangements of their ligands determine their behaviors. The asymmetrical pattern generates an upside down phenomenon, which requires more energy to get through the membrane; the uniform distribution penetrates through a membrane with less difficulty. Decreasing the stiffness, the length of ligands or preferring hydrophobic ligands increases the penetration capability of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almquist BD, Verma P, Cai W, Melosh NA (2011) Nanoscale patterning controls inorganic–membrane interface structure. Nanoscale 3(2):391–400

    Article  Google Scholar 

  • Bahadur K, Thapa B, Bhattarai N (2014) Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnol Rev 3(3):269–280

    Article  Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci 104(20):8218–8222

    Article  Google Scholar 

  • Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H, Nakanishi H, Yu M, Patashinski AZ, Glotzer SC, Stellacci F (2012) Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater 11(11):978–985

    Article  Google Scholar 

  • Donkor DA, Tang XS (2014) Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube. Biomaterials 35(9):3121–3131

    Article  Google Scholar 

  • Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhys Lett) 30:191

    Article  Google Scholar 

  • Esser B, Schnorr JM, Swager TM (2012) Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew Chem Int Ed 51(23):5752–5756

    Article  Google Scholar 

  • Fabbro C, Ros TD, Prato M (2013) Carbon nanotube derivatives as anticancer drug delivery systems. In: Chiara Fabbro, Tatiana Da Ros, Maurizio Prato (eds) Organic nanomaterials: synthesis, characterization, and device applications. Wiley, New York, pp 469–486

  • Gagner JE, Shrivastava S, Qian X, Dordick JS, Siegel RW (2012) Engineering nanomaterials for biomedical applications requires understanding the nano–bio interface: a perspective. J Phys Chem Lett 3(21):3149–3158

    Article  Google Scholar 

  • Ganzenmüller G, Hiermaier S, Steinhauser M (2011) Shock-wave induced damage in lipid bilayers: a dissipative particle dynamics simulation study. Soft Matter 7(9):4307–4317

    Article  Google Scholar 

  • Gao L, Shillcock J, Lipowsky R (2007) Improved dissipative particle dynamics simulations of lipid bilayers. J Chem Phys 126:015101

    Article  Google Scholar 

  • Gkeka P, Sarkisov L, Angelikopoulos P (2013) Homogeneous hydrophobic–hydrophilic surface patterns enhance permeation of nanoparticles through lipid membranes. J Phys Chem Lett 4(11):1907–1912

    Article  Google Scholar 

  • Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108:7397

    Article  Google Scholar 

  • Goicochea AG (2014) Designing biodegradable surfactants and effective biomolecules with dissipative particle dynamics. Experimental and Computational Fluid Mechanics. Springer, Switzerland, pp 433–447

    Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423

    Article  Google Scholar 

  • Hwang SR, Ku SH, Joo MK, Kim SH, Kwon IC (2014) Theranostic nanomaterials for image-guided gene therapy. MRS Bull 39(01):44–50

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Illya G, Lipowsky R, Shillcock J (2005) Effect of chain length and asymmetry on material properties of bilayer membranes. J Chem Phys 122:244901

    Article  Google Scholar 

  • Jackson AM, Myerson JW, Stellacci F (2004) Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater 3(5):330–336

    Article  Google Scholar 

  • Jang SG, Audus DJ, Klinger D, Krogstad DV, Kim BJ, Cameron A, Kim S-W, Delaney KT, Hur S-M, Killops KL (2013) Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J Am Chem Soc 135(17):6649–6657

    Article  Google Scholar 

  • Jusufi A, DeVane RH, Shinoda W, Klein ML (2011) Nanoscale carbon particles and the stability of lipid bilayers. Soft Matter 7(3):1139–1146

    Article  Google Scholar 

  • Kraszewski S, Picaud F, Elhechmi I, Gharbi T, Ramseyer C (2012) How long a functionalized carbon nanotube can passively penetrate a lipid membrane. Carbon 50(14):5301–5308

    Article  Google Scholar 

  • Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4(9):1372–1381

    Article  Google Scholar 

  • Liu X, Yu M, Kim H, Mameli M, Stellacci F (2012) Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. Nat commun 3:1182

    Article  Google Scholar 

  • Liu F, Wu D, Kamm RD, Chen K (2013a) Analysis of nanoprobe penetration through a lipid bilayer. Biochimica et Biophysica Acta (BBA)-Biomembr 1828(8):1667–1673

    Article  Google Scholar 

  • Liu L, Yang C, Zhao K, Li J, Wu H-C (2013b) Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat commun 4:2989

    Google Scholar 

  • Mei L, Zhang Z, Zhao L, Huang L, Yang X-L, Tang J, Feng S-S (2013) Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65(6):880–890

    Article  Google Scholar 

  • Moglianetti M, Ong QK, Reguera J, Harkness KM, Mameli M, Radulescu A, Kohlbrecher J, Jud C, Svergun DI, Stellacci F (2014) Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chem Sci 5(3):1232–1240

    Article  Google Scholar 

  • Moser ML, Tian X, Pekker A, Sarkar S, Bekyarova E, Itkis ME, Haddon RC (2014) Hexahapto-lanthanide interconnects between the conjugated surfaces of single-walled carbon nanotubes. Dalton Trans 43(20):7379–7382

    Article  Google Scholar 

  • Münzer AM, Seo W, Morgan GJ, Michael ZP, Zhao Y, Melzer K, Scarpa G, Star A (2014) Sensing reversible protein–ligand interactions with single-walled carbon nanotube field-effect transistors. J Phys Chem C 118(31):17193–17199

    Article  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557

    Article  Google Scholar 

  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5(1):27–30

    Article  Google Scholar 

  • Ormsby RW, McNally T, Mitchell CA, Musumeci A, Schiller T, Halley P, Gahan L, Martin D, Smith SV, Dunne NJ (2014) Chemical modification of multiwalled carbon nanotube with a bifunctional caged ligand for radioactive labelling. Acta Mater 64:54–61

    Article  Google Scholar 

  • Ortiz V, Nielsen SO, Discher DE, Klein ML, Lipowsky R, Shillcock J (2005) Dissipative particle dynamics simulations of polymersomes. J Phys Chem B 109(37):17708–17714

    Article  Google Scholar 

  • Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7(9):7442–7447

    Article  Google Scholar 

  • Peng Z, Pivkin IV, Li X, Karniadakis GE, Dao M (2014) Two-component dissipative particle dynamics model of red blood cells. Biophys J 106(2):573a

    Google Scholar 

  • Pogodin S, Baulin VA (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4(9):5293–5300

    Article  Google Scholar 

  • Sapna J, Shree RS, Shreekumar P (2012) Toxicity issues related to biomedical applications of carbon nanotubes. J Nanomed Nanotechnol 3:140

  • Sarukhanyan E, De Nicola A, Roccatano D, Kawakatsu T, Milano G (2014) Spontaneous insertion of carbon nanotube bundles inside biomembranes: a hybrid particle-field coarse-grained molecular dynamics study. Chem Phys Lett 595:156–166

    Article  Google Scholar 

  • Tan SJ, Jana NR, Gao S, Patra PK, Ying JY (2010) Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater 22(7):2239–2247

    Article  Google Scholar 

  • Van Lehn RC, Alexander-Katz A (2011) Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: simulations and theory. Soft Matter 7(24):11392–11404

    Article  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  Google Scholar 

  • Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  Google Scholar 

  • Yang K, Ma Y-Q (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583

    Article  Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):412001

    Article  Google Scholar 

  • Young AN, Kairdolf BA (2013) Nanotechnology in molecular diagnostics. In: Cheng L, Zhang DY (eds) Molecular genetic pathology, 2nd edn. Springer, New York, pp 383–398

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support for portions of this research from the Fundamental Research Funds for the Central Universities under Grant No. CDJZR14905502, the National Natural Science Foundation of China under Grant No. 51175278, and the Singapore-MIT Alliance for Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wu, D. & Chen, K. Ligands influence a carbon nanotube penetration through a lipid bilayer. J Nanopart Res 16, 2692 (2014). https://doi.org/10.1007/s11051-014-2692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2692-8

Keywords

Navigation