Skip to main content
Log in

Investigating the effects of particle size and chemical structure on cytotoxicity and bacteriostatic potential of nano hydroxyapatite/chitosan/silica and nano hydroxyapatite/chitosan/silver; as antibacterial bone substitutes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The restoration of defective bone tissue and complications related to surgery and fracture site infection are major concerns in orthopedic surgeries. However, it is crucial to develop osteoconductive and bacteriostatic composites. Chitosan/nano hydroxyapatite (CT/n-HAp) powder containing of Ag and Si were prepared by an in situ hybridization method. The aim of this work was to elucidate the effect of size, surface roughness, and chemical structure of mentioned nanocomposites on cytotoxicity and bacteriostatic activity via human osteoblast cells and Escherichia Coli, respectively. Particle size, surface roughness, reactive oxygen specious production, and bioactivity of nanocomposites were investigated by X ray diffraction, atomic force microscopy, DPPH assay, and SEM/UV–Visible spectrophotometer, respectively. Bacterial colony counting test, MTT assay and lactate dehydrogenase (LDH) release were performed as bacteriostatic and biocompatibility tests. The results showed that CT/n-HAp/Ag with smaller particle size in the range of 1–22.6 nm (10.00 ± 0.09 nm) than CT/n-HAp/Si in the range of 3–72.5 nm (18.00 ± 0.14 nm) exhibits higher cell viability and bacteriostatic activity, and less LDH release from cell plasma membrane. Integration of Ag into the nanocomposite hindered the release of Ag+ ions and restricts cytotoxic potential on cells. Higher cytotoxic effect of CT/n-HAp/Si might be related to proton concentration derived from nanocomposite and its chemical structure. In conclusion, the strong bone regeneration potential of CT/n-HAp and good biocompatibility and bacteriostatic activity of CT/n-HAp/Ag make it as potential bacteriostatic bone filler in site of infected bone fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albano C, Perera R, Cataño L, Karam A, González G (2011) Prediction of mechanical properties of composites of HDPE/HA/EAA. J Mech Behav Biomed 4(3):467–475

    Article  Google Scholar 

  • Batandier C, Fontaine E, Kériel C, Leverve XM (2002) Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 6(2):175–187

    Article  Google Scholar 

  • Best S, Zou S, Brooks RA, Huang J, Rushton N, Bonfield W (2008) The osteogenic behaviour of silicon substituted hydroxyapatite. Key Eng Mat 361:985–988

    Article  Google Scholar 

  • Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H et al (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25

    Article  Google Scholar 

  • Botelho C, Brooks R, Best S, Lopes M, Santos J, Rushton N et al (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79:723–730

    Article  Google Scholar 

  • Carlisle EM (1980a) A silicon requirement for normal skull formation in chicks. J Nutr 110:352–359

    Google Scholar 

  • Carlisle EM (1980b) Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr 110:1046–1056

    Google Scholar 

  • Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517

    Article  Google Scholar 

  • Chen W, Oh S, Ong A, Oh N, Liu Y, Courtney H et al (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A 82(4):899–906

    Article  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Article  Google Scholar 

  • Giovanardi D (2014) Cranial osteomyelitis due to E. coli infection in commercial layers. Vet Rec 18;174(3):76

  • Heinemann S, Coradin T, Worch H, Wiesmann H, Hanke T (2011) Possibilities and limitations of preparing silica/collagen/hydroxyapatite composite xerogels as load-bearing biomaterials. Compos Sci Technol 71(16):1873–1880

    Article  Google Scholar 

  • Hui Q, Chen Z, Zhiquan A, Yao J, Yaochao Z, Jiaxin W, Xin L, Bing H, Xianlong Z, Yang W (2014) Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomed 9:2469–2478

    Google Scholar 

  • Hwang S, Jeong S (2011) Electrospun nano composites of poly (vinyl pyrrolidone)/nano-silver for antibacterial materials. J Nanosci Nanotechnol 11(1):610–613

    Article  Google Scholar 

  • Itoh S, Kikuchi M, Takakuda K, Nagaoka K, Koyama Y, Tanaka J et al (2002) Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res 63(5):507–515

    Article  Google Scholar 

  • Jiang J, Huo K, Chen S, Xin Y, Xu Y, Wu Z (2009) Intracellular chromosome breaks on silicon surface. Biomaterials 30:2661–2665

    Article  Google Scholar 

  • Jongwattanapisan P, Charoenphandhu N, Krishnamra N, Thongbunchoo J, Tang I, Hoonsawat R et al (2011) In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan–silica nanocomposite. Mater Sci Eng C 31:290–299

    Article  Google Scholar 

  • Khanna R, Katti KS, Katti DR (2010) In situ swelling behavior of chitosan–polygalacturonic acid/hydroxyapatite nanocomposites in cell culture media. Int J Polym Sci 1–12

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH et al (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    Article  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  Google Scholar 

  • Luo X, Zhang L, Morsi Y, Zou Q, Wang Y, Gao S et al (2011) Hydroxyapatite/polyamide 66 porous scaffold with an ethylene vinyl acetate surface layer used for simultaneous substitute and repair of articular cartilage and underlying bone. Appl Surf Sci 257(23):9888–9894

    Article  Google Scholar 

  • Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40(2):209–220

    Article  Google Scholar 

  • Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255(2):435–438

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  Google Scholar 

  • Murugan R, Panduranga Rao K (2002) Biodegradable coralline hydroxyapatite composite-gel using natural alginate. Key Eng Mater 240:407–410

    Google Scholar 

  • Murugan R, Rao KP (2003) Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J Biomater Sci Polym Ed 14(5):457–468

    Article  Google Scholar 

  • Muzzarelli R (2011) CT composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83:1433–1445

    Article  Google Scholar 

  • Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) “Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40(3):287–291

    Article  Google Scholar 

  • Pang X, Zhitomirsky I (2008) Electro deposition of hydroxyapatite–silver–CT nanocomposite coatings. Surf Coat Technol 202:3815–3821

    Article  Google Scholar 

  • Pape HC, Evans A, Kobbe P (2010) Autologous bone graft: properties and techniques. J Orthop Trauma 24:S36–S40

    Article  Google Scholar 

  • Pratsinis A, Hervella P, Leroux J-C, Pratsinis SE, Sotiriou GA (2013) Toxicity of silver nanoparticles in macrophages. Small 15:2576–2584

    Article  Google Scholar 

  • Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205(8):2785–2792

    Article  Google Scholar 

  • Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26(5):471–482

    Article  Google Scholar 

  • Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K et al (2010) Synthesis and characterization of nanoscale hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339

    Article  Google Scholar 

  • Santos HA, Riikonen J et al (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Acta Biomater 6(7):2721–2731

    Article  Google Scholar 

  • Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193

    Article  Google Scholar 

  • Shokrgozar M, Farokhi M, Rajaei F, Bagheri M, Azari S, Ghasemi I (2010) Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. J Biomed Mater Res A 95:1074–1083

    Article  Google Scholar 

  • Sionkowska A, Kozłowska J (2010) Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Int J Biol Macromol 47(4):483–487

    Article  Google Scholar 

  • Stoesser N, Pocock J, Moore CE, Soeng S, Hor P, Sar P (2013) The epidemiology of pediatric bone and joint infections in Cambodia, 2007–11. J Trop Pediatr 59(1):36–42

    Article  Google Scholar 

  • Tan F, Naciri M, Dowling D, Al-Rubeai M (2012) In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotech adv 30(1):352–362

    Article  Google Scholar 

  • Tavakol S, Kashani IR, Azami M, Khoshzaban A, Tavakol B, Kharrazi S et al (2012) In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM. J Nanopart Res 14(12):1–14

    Article  Google Scholar 

  • Tavakol S, Khoshzaban A, Azami M, Kashani IR, Tavakol H, Yazdanifar M, Sorkhabadi SM (2013a) The effect of carrier type on bone regeneration of demineralized bone matrix in vivo. J Craniofac Surg 24(6):2135–2140

    Article  Google Scholar 

  • Tavakol S, Nikpour M, Amani A, Soltani M, Rabiee S, Rezayat S et al (2013b) Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study. J Nanopart Res 15(1):1–16

    Article  Google Scholar 

  • Thian E, Huang J, Best S, Barber Z, Bonfield W (2006a) Silicon-substituted hydroxyapatite thin films: Effect of annealing temperature on coating stability and bioactivity. J Biomed Mater Res A 78:121–128

    Article  Google Scholar 

  • Thian ES, Huang J, Best SM, Barber ZH, Brooks RA, Rushton N et al (2006b) The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials 27:2692–2698

    Article  Google Scholar 

  • Thompson ML, Kateley LJ (1999) The Nernst equation: determination of equilibrium constants for complex ions of silver. J Chem Educ 76(1):95

    Article  Google Scholar 

  • Wagoner Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7(1):16–30

    Article  Google Scholar 

  • Yamaguchi I, Tokuchi K et al (2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res 55(1):20–27

    Article  Google Scholar 

  • Zyman Z, Rokhmistrov D, Ivanov I, Epple M (2006) The influence of foreign ions on the crystal lattice of hydroxyapatite upon heating. Mater Wiss Werkst Technol 37(6):530–532

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shima Tavakol, Mohammad Reza Nikpour or Mohsen Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, S., Nikpour, M.R., Hoveizi, E. et al. Investigating the effects of particle size and chemical structure on cytotoxicity and bacteriostatic potential of nano hydroxyapatite/chitosan/silica and nano hydroxyapatite/chitosan/silver; as antibacterial bone substitutes. J Nanopart Res 16, 2622 (2014). https://doi.org/10.1007/s11051-014-2622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2622-9

Keywords

Navigation