Skip to main content

Advertisement

Log in

Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) and time-dependent DFT (TD-DFT) methodologies have been applied in an attempt to improve the performance of the dye YD2-o-C8 which is characterized by 11.9–12.7 % efficiencies. We aimed at narrowing the band gap of YD2-o-C8 to extend the light harvesting region to near IR. This was done through replacing the porphyrin macrocycle by the tetraazaporphyrin (porphyrazin) macrocycle, so that the performances of the suggested cells could be improved with Ti38O76, (TiO2)60, SiC, ZrO2, and GaP semiconductor electrodes. The effects of modifying the central macrocycle on cell performance are confirmed in terms of FMOs, energy gaps, electrode (VB and CB) edges, density of states (DOS), MEPs, dipole moments, IP, EA, reorganization energies, UV–Vis absorption, ΦLHE, Φinjection, and life times of the excited states. Replacing porphyrin macrocycle by porphyrazin macrocycle resulted in charge separated states, unidirectional charge transfer, narrower band gaps, increase of DOS nearby Fermi levels, asymmetric polarization, delocalization of the negative charges near the anchoring groups, efficient electron injection, suppressing macrocycle aggregation, active dye regeneration, longer life times of the excited states, and inhibited dye recombination. Co-sensitizers are suggested for near IR sensitization to improve the photo-to-current conversion efficiency. Size ranges: for dyes (0.1–1 nm), and for pore diameters of a dye sensitized mesoporous film of TiO2 (2–50 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balanay MP, Kim DH (2009) Structures and excitation energies of Zn–tetraarylporphyrin analogues: a theoretical study. J Mol Struct 910:20–26

    Article  Google Scholar 

  • Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  Google Scholar 

  • Becke AD (1988) Density–functional exchange–energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5653

    Article  Google Scholar 

  • Caballol R, Castell O, Illas F, Malrieu JP, Moreira IPR (1997) Remarks on the proper use of the broken symmetry approach to magnetic coupling. J Phys Chem A 101:7860–7866

    Article  Google Scholar 

  • Cahen D, Hodes G, Gratzel M, Juillemoles JF, Riess I (2000) Nature of photovoltaic action in dye-sensitized solar cells. J Phys Chem B 104:2053–2059

    Article  Google Scholar 

  • Chen SL, Yang LN, Li ZS (2013) How to design more efficient organic dyes for dye sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J Power Sources 223:86–93

    Article  Google Scholar 

  • Ditchfield R (1972) Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys 56(1972):5688–5692

    Article  Google Scholar 

  • Dong H, Zhou X, Jiang C (2012) Molecular design and theoretical investigation on novel porphyrin derivatives for dye-sensitized solar cells. Theor Chem Acc 131:1102–1113

    Article  Google Scholar 

  • Duncan WR, Stier W, Prezhdo OV (2007) Ab initio simulations of photoinduced molecule–semiconductor electron transfer, chap. 11. In: Balbuena PB, Seminario JM (eds) Nanomaterials: design and simulation. Elsevier BV, Amsterdam

    Google Scholar 

  • Einstein A (1917) On the quantum theory of radiation. Phys Z 18:121–128

    Google Scholar 

  • Frisch MJ et al (2010) Gaussian 98. Gaussian Inc., Pittsburgh

    Google Scholar 

  • García-Iglesias M, Cid JJ, Yum JH, Forneli A, Vázquez P, Nazeeruddin MK, Palomares E, Grätzel M, Torres T (2011) Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. Energy Environ Sci 4:189–194

    Article  Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  Google Scholar 

  • Gratzel M (2001) Review article. Photoelectrochemical cells. Nature 414(2001):338–344

    Article  Google Scholar 

  • Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104:538–547

    Article  Google Scholar 

  • Hara K, Wang ZS, Sato T, Furube A, Katoh R, Sugihara H, Dan-oh Y, Kasada C, Shinpo A, Suga S (2005) Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 109:15476–15482

    Article  Google Scholar 

  • Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6:162–169

    Article  Google Scholar 

  • Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126:12218–12219

    Article  Google Scholar 

  • Hutchison GR, Ratner MA, Marks TJ (2005) Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J Am Chem Soc 127:2339–2350

    Article  Google Scholar 

  • Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energy 35:7087–7097

    Article  Google Scholar 

  • Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  Google Scholar 

  • Kose ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles G (2007) Theoretical studies on conjugated phenyl-cored thiophene dendrimers for photovoltaic applications. J Am Chem Soc 129:14257–14270

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  • Lee MJ, Balanay MP, Kim DH (2012) Molecular design of distorted push–pull porphyrins for dye-sensitized solar cells. Theor Chem Acc 131:1269

    Article  Google Scholar 

  • Lundqvist MJ, Nilsing M, Persson P, Luell S (2006) DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals. Int J Quantum Chem 106:3214–3234

    Article  Google Scholar 

  • Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455

    Article  Google Scholar 

  • Moser JE, Gratzel M (1993) Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region. Chem Phys 176:493–500

    Article  Google Scholar 

  • Naray-Szabo G, Ferenczy GG (1995) Molecular electrostatics. Chem Rev 95:829–847

    Article  Google Scholar 

  • Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel M (2005) Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  Google Scholar 

  • Ning Z, Zhang Q, Pei H, Luan J, Lu C, Cui Y, Tian H (2009) Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design. J Phys Chem C 113:10307–10313

    Article  Google Scholar 

  • O’Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  • Philaga K, Kleinpeter E (1994) Carbon-13 chemical in structural and stereochemical analysis. VCH Publishers, Deerfield Beach

    Google Scholar 

  • Prasad O, Sinha L, Misra N, Narayan V, Kumar N, Pathak J (2010) Molecular structure and vibrational study on 2,3-dihydro-1H-indene and its derivative 1H-indene-1,3(2H)-dione by density functional theory calculations. J Mol Struct 940:82–86

    Article  Google Scholar 

  • Preat J, Michaux C, Jacquemin D, Perpète EA (2009) Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J Phys Chem C 113:16821–16833

    Article  Google Scholar 

  • Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem Phys 376:56–68

    Article  Google Scholar 

  • Ragoussi ME, Cid JJ, Yum JH, Torre G, Censo DD, Grätzel M, Nazeeruddin MK, Torres T (2012) Carboxyethynyl anchoring ligands: a means to improving the efficiency of phthalocyanine-sensitized solar cells. Angew Chem 51:4375–4378

    Article  Google Scholar 

  • Retsek JL, Drain CM, Kirmaier C, Nurco DJ, Medforth J, Smith KM, Sazanovich IV, Chirvony VS, Fajer J, Holten D (2003) Photoinduced axial ligation and deligation dynamics of nonplanar nickel dodecaarylporphyrins. J Am Chem Soc 125:9787–9800

    Article  Google Scholar 

  • Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Mhuircheartaigh EMN (2007) Nonlinear optical properties of porphyrins. Adv Mater 19:2737–2774

    Article  Google Scholar 

  • Shalabi AS, El Mahdy AM, Assem MM, Taha HO, Abdel Halim WS (2013) Theoretical characterization of highly efficient dye sensitized solar cells. Mol Phys. http://dx.doi.org/10.1080/00268976.2013.795249

  • Tachinaba Y, Haque SA, Mercer IP, Durrant JR, Klug D (2000) Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films: a comparison of ruthenium bipyridyl and porphyrin sensitizer dyes. J Phys Chem B 104:1198–1205

    Article  Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  Google Scholar 

  • Wang DL, Shen HT, Gu HM, Zhai YC (2006) Ab initio studies on the molecular electrostatic potential of C50. J Mol Struct 776:47–51

    Article  Google Scholar 

  • Wang J, Bai FQ, Xia BH, Feng L, Zhang HX, Pan QJ (2011) On the viability of cyclometalated Ru(II) complexes as dyes in DSSC regulated by COOH group, a DFT study. Chem Phys Phys Chem 13:2206–2213

    Article  Google Scholar 

  • Waston DF, Meyer GJ (2005) Electron injection at dye-sensitized semiconductor electrodes. Annu Rev Phys Chem 56:119–156

    Article  Google Scholar 

  • Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  Google Scholar 

  • Yang LN, Sun ZZ, Chen SL, Li ZS (2013) The effects of various anchoring groups on optical and electronic properties of dyes in dye-sensitized solar cells. Dyes Pigm 99:29–35

    Article  Google Scholar 

  • Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  Google Scholar 

  • Yum JH, Hagberg DP, Moon SJ, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) A light-resistant organic sensitizer for solar-cell applications. Angew Chem 121:1604–1608

    Article  Google Scholar 

  • Zhang R, Du B, Sun G, Sun Y (2010) Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim Acta A 75:1115–1124

    Article  Google Scholar 

  • Zhang S, Yang X, Numata Y, Han L (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6:1443–1464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Shalabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalabi, A.S., El Mahdy, A.M., Assem, M.M. et al. Theoretical characterization of highly efficient porphyrazin dye sensitized solar cells. J Nanopart Res 16, 2579 (2014). https://doi.org/10.1007/s11051-014-2579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2579-8

Key words

Navigation