Skip to main content
Log in

Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Time-resolved characterization of silica-coated magnetite nanoparticles during synthesis is performed using our self-developed small-angle X-ray scattering (SAXS) instrument. The shell growth (5–20 nm) is determined quantitatively using a core–shell sphere model. SAXS analyses provide reliable information on the shell thickness despite the complex geometry of the synthesized nanocomposites. They are in good agreement with transmission electron microscope (TEM) observations. Firstly, time-resolved SAXS analyses are used to study the influence of the precursor concentration (tetraethyl orthosilicate) on growth kinetics. Time evolution of the shell thickness can be described by diffusion-limited shell growth, obeying kinetics of first order in the precursor concentration. Furthermore, SAXS measurements provide information on the standard deviation of the shell thickness as a function of the coating time. Its decrease observed with increasing coating time is explained by a self-sharpening mechanism and/or a morphology evolution to more isometric shapes. Additionally, the influence of ammonia is studied. By increasing its concentration, the growth rate is affected. However, the final shell thickness and the standard deviation do not change significantly. For low ammonia concentration, by contrast, the SAXS and TEM observations reveal superimposed silica gelation. In addition, coating reaction was conducted at elevated temperature (40 °C). SAXS patterns measured as a function of the coating time and TEM micrographs reveal simultaneous production of classic Stöber particles under these conditions. Hence, SAXS is found to have a big potential for on-line monitoring of the shell properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146. doi:10.1107/s0021889895011605

    Article  Google Scholar 

  • Boukari H, Lin JS, Harris MT (1997a) Probing the dynamics of the silica nanostructure formation and growth by SAXS. Chem Mater 9(11):2376–2384. doi:10.1021/cm9702878

    Article  Google Scholar 

  • Boukari H, Lin JS, Harris MT (1997b) Small-angle X-ray scattering study of the formation of colloidal silica particles from alkoxides: primary particles or not? J Colloid Interface Sci 194(2):311–318. doi:10.1006/jcis.1997.5112

    Article  Google Scholar 

  • Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. doi:10.1016/j.jmmm.2004.06.032

    Article  Google Scholar 

  • Caruana L, Costa AL, Cassani MC, Rampazzo E, Prodi L, Zaccheroni N (2012) Tailored SiO2-based coatings for dye doped superparamagnetic nanocomposites. Colloid Surf A 410:111–118. doi:10.1016/j.colsurfa.2012.06.027

    Article  Google Scholar 

  • Chen ZH, Hwang SH, Zeng X-b, Roh J, Jang J, Ungar G (2013) SAXS characterization of polymer-embedded hollow nanoparticles and of their shell porosity. J Appl Crystallogr 46:1654–1664. doi:10.1107/s0021889813025132

    Article  Google Scholar 

  • Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys 46:809

    Article  Google Scholar 

  • Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloid Surf A 262(1–3):87–93. doi:10.1016/j.colsurfa.2005.04.009

    Article  Google Scholar 

  • Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580. doi:10.1021/cm302828d

    Article  Google Scholar 

  • Elingarami S, Zeng X (2011) A short review on current use of magnetic nanoparticles for bio-separation, sequencing, diagnosis and drug delivery. Adv Sci Lett 4(11–12):3295–3300. doi:10.1166/asl.2011.1884

    Article  Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  • Goertz V, Dingenouts N, Nirschl H (2009) Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part Part Syst Charact 26(1-2):17–24. doi:10.1002/ppsc.200800002

    Article  Google Scholar 

  • Goertz V, Gutsche A, Dingenouts N, Nirschl H (2012) Small-angle X-ray scattering study of the formation of colloidal SiO2 Stober multiplets. J Phys Chem C 116(51):26938–26946. doi:10.1021/jp3111875

    Article  Google Scholar 

  • Gregory AP, Clarke RN, Cox MG (2009) Traceable measurement of dielectric reference liquids over the temperature interval 10–50 °C using coaxial-line methods. Meas Sci Technol 20(7):075106. doi:10.1088/0957-0233/20/7/075106

  • Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Guo X, Gutsche A, Nirschl H (2013a) SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges. J Nanopart Res 15(11):1–13. doi:10.1007/s11051-013-2058-7

    Article  Google Scholar 

  • Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013b) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15(4):1–3. doi:10.1007/s11051-013-1559-8

    Article  Google Scholar 

  • Hasany SF, Abdurahman NH, Sunarti AR, Jose R (2013) Magnetic iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci 9(5):561–575

    Article  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19(1):33–60. doi:10.1002/adma.200600674

    Article  Google Scholar 

  • Liu B, Wang D-P, Huang W-H, Yao A-H, Koji I (2008) Preparation of core–shell SiO2/Fe3O4 nanocomposite particles via sol–gel approach. J Inorg Mater 23(1):33–38

    Article  Google Scholar 

  • Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248. doi:10.1109/tmag.1981.1061188

    Article  Google Scholar 

  • Mine E, Yamada A, Kobayashi Y, Konno M, Liz-Marzan LM (2003) Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J Colloid Interface Sci 264(2):385–390. doi:10.1016/s0021-9797(03)00422-3

    Article  Google Scholar 

  • Philipse AP, Vanbruggen MPB, Pathmamanoharan C (1994) Magnetic silica dispersions—preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10(1):92–99. doi:10.1021/la00013a014

    Article  Google Scholar 

  • Pontoni D, Narayanan T, Rennie AR (2002) Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18(1):56–59. doi:10.1021/la015503c

    Article  Google Scholar 

  • Roshan Deen G, Oliveira CLP, Pedersen JS (2009) Phase behavior and kinetics of phase separation of a nonionic microemulsion of C12E5/water/1-chlorotetradecane upon a temperature quench. J Phys Chem B 113(20):7138–7146. doi:10.1021/jp808268m

    Article  Google Scholar 

  • Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Monatsh Chem 133(6):737–759. doi:10.1007/s007060200047

    Article  Google Scholar 

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613. doi:10.1016/s1389-1723(02)80202-x

    Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodispersed silica spheres in micron size range. J Colloid Interface Sci 26(1):62. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Colloid Interface Sci 28(1):65–108. doi:10.1016/0001-8686(87)80009-x

    Article  Google Scholar 

  • Tobler DJ, Benning LG (2013) In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim Cosmochim Acta 114:156–168. doi:10.1016/j.gca.2013.03.045

    Article  Google Scholar 

  • Wengeler R, Wolf F, Dingenouts N, Nirschl H (2007) Characterizing dispersion and fragmentation of fractal, pyrogenic silica nanoagglomerates by small-angle X-ray scattering. Langmuir 23(8):4148–4154. doi:10.1021/la063073q

    Article  Google Scholar 

  • Zhang X-l, Niu H-y, Li W-h, Shi Y-l, Cai Y-q (2011) A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem Commun 47(15):4454–4456. doi:10.1039/c1cc10300h

    Article  Google Scholar 

Download references

Acknowledgments

The research work producing these results was funded by the German Research Foundation (DFG Ni 414/13-1). We also acknowledge the support by the European Union’s Seventh Framework Programme under Grant Agreement No. 280765 (BUONAPART-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gutsche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutsche, A., Daikeler, A., Guo, X. et al. Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites. J Nanopart Res 16, 2475 (2014). https://doi.org/10.1007/s11051-014-2475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2475-2

Keywords

Navigation