Skip to main content
Log in

Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new method to conjugate methoxy polyethylene glycol (mPEG) to C6 position of chitosan under the mild condition is introduced that improves the biocompatibility and water solubility of chitosan. Harsh deprotecting step and several purification cycles are two major disadvantages of the current methods for preparing PEGylated chitosan. In this study, the amine groups at C2 position of chitosan are protected using SDS followed by grafting the PEG. The protecting group of chitosan is simply removed by dialyzing against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1H NMR spectroscopy. Fourier transformed-infrared (FT-IR) and 1H NMR spectra confirmed that the mPEG is successfully grafted to C6 position of chitosan. Prepared methoxy polyethylene glycol (mPEG) is then employed to prepare the nanocapsules for the encapsulation of poor water-soluble drug, propofol. The TEM, AFM, and DLS techniques are used to characterize the prepared nanocapsules size and morphology. The results show a size of about 80 nm with spherical shape for nanocapsules. In vitro drug release is carried out to evaluate the potential of nanocarriers for the intravenous delivery of drugs. The profile of release from formulated nanocapsules is similar to those of commercial lipid emulsion (CLE). In vivo animal sleep-recovery test on rats shows a close similarity between the time of unconsciousness and recovery of righting reflex between nanoparticles and CLE. This study provides an efficient, novel, and easy method for preparing a carrier system that requires less intensive reaction conditions, fewer reaction steps, and less purification steps. In addition, the nanocapsules introduced here could be a promising nano carrier for the delivery of poor water-soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker MT, Naguib M (2005) Propofol: the challenges of formulation. Anesthesiology 103(4):860–876

    Article  Google Scholar 

  • Brambrink AM, Dissen GA, Martin LD, Creeley CE, Olney JW (2012) Propofol-induced apoptosis of neurons and oligodendrocytes in neonatal macaque brain. Am Soc Anesthesiol

  • Brooking J, Davis S, Illum L (2001) Transport of nanoparticles across the rat nasal mucosa. J Drug Target 9(4):267–279

    Article  Google Scholar 

  • Cai G, Jiang H, Tu K, Wang L, Zhu K (2009) A facile route for regioselective conjugation of organo-soluble polymers onto chitosan. Macromol Biosci 9(3):256–261

    Article  Google Scholar 

  • Chiu H-C, Chern C-S, Lee C-K, Chang H-F (1998) Synthesis and characterization of amphiphilic poly (ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer 39(8):1609–1616

    Article  Google Scholar 

  • Chung H, Kim TW, Kwon M, Kwon IC, Jeong SY (2001) Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. J Control Release 71(3):339–350

    Article  Google Scholar 

  • Deacon M, Davis S, White R, Nordman H, Carlstedt I, Errington N, Rowe A, Harding S (1999) Are chitosan–mucin interactions specific to different regions of the stomach? Velocity ultracentrifugation offers a clue. Carbohydr Polym 38(3):235–238

    Article  Google Scholar 

  • Dembo A, Starodoubtsev S (2001) Interaction between polyelectrolyte gel-surfactant complexes with oppositely charged polymer and surfactant components. Macromolecules 34(8):2635–2640

    Article  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573

    Article  Google Scholar 

  • Du J, Hsieh Y-L (2007) PEGylation of chitosan for improved solubility and fiber formation via electrospinning. Cellulose 14(6):543–552

    Article  Google Scholar 

  • Fiebrig I, Harding SE, Rowe AJ, Hyman SC, Davis SS (1995) Transmission electron microscopy studies on pig gastric mucin and its interactions with chitosan. Carbohydr Polym 28(3):239–244

    Article  Google Scholar 

  • Fiebrig I, Vårum KM, Harding SE, Davis SS, Stokke BT (1997) Colloidal gold and colloidal gold labelled wheat germ agglutinin as molecular probes for identification in mucin/chitosan complexes. Carbohydr Polym 33(2):91–99

    Article  Google Scholar 

  • Finkelstein A, Lokhandwala BS, Pandey NS (1990) Particulate contamination of an intact glass ampule. Anesthesiology 73(2):362–363

    Article  Google Scholar 

  • Florence A, Hillery A, Hussain N, Jani P (1995) Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence. J Drug Target 3(1):65–70

    Article  Google Scholar 

  • Ganji F, Abdekhodaie M (2008) Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydr Polym 74(3):435–441

    Article  Google Scholar 

  • Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T (2008) Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J Control Release 125(2):145–154

    Article  Google Scholar 

  • Gorochovceva N, Makuška R (2004) Synthesis and study of water-soluble chitosan-O-poly (ethylene glycol) graft copolymers. Eur Polymer J 40(4):685–691

    Article  Google Scholar 

  • Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55(2):217–250

    Article  Google Scholar 

  • Gruškienė R, Čiuta G, Makuška R (2009) Grafting of poly (ethylene glycol) to chitosan at c (6) position of glucosamine units via “click chemistry” reactions. Chemija 20(4):241–249

    Google Scholar 

  • Han J, Davis SS, Washington C (2001) Physical properties and stability of two emulsion formulations of propofol. Int J Pharm 215(1):207–220

    Article  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90(12):1927–1936

    Article  Google Scholar 

  • Holappa J, Nevalainen T, Savolainen J, Soininen P, Elomaa M, Safin R, Suvanto S, Pakkanen T, Másson M, Loftsson T (2004) Synthesis and characterization of chitosan N-betainates having various degrees of substitution. Macromolecules 37(8):2784–2789

    Article  Google Scholar 

  • Hu F-Q, Meng P, Dai Y-Q, Du Y-Z, You J, Wei X-H, Yuan H (2008) PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm 70(3):749–757

    Article  Google Scholar 

  • Hung C-F, Fang C-L, Liao M-H, Fang J-Y (2007) The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion. Int J Pharm 335(1):193–202

    Article  Google Scholar 

  • Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331

    Article  Google Scholar 

  • Jia Z, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333(1):1–6

    Article  Google Scholar 

  • Kandadi P, Syed MA, Goparaboina S, Veerabrahma K (2011) Brain specific delivery of pegylated indinavir submicron lipid emulsions. Eur J Pharm Sci 42(4):423–432

    Article  Google Scholar 

  • Krishna Rao K, Ramasubba Reddy P, Lee Y-I, Kim C (2012) Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydr Polym 87(1):920–925

    Article  Google Scholar 

  • Kulkarni AR, Hukkeri VI, Sung HW, Liang HF (2005) A Novel Method for the Synthesis of the PEG-Crosslinked Chitosan with a pH-Independent Swelling Behavior. Macromol Biosci 5(10):925–928

    Article  Google Scholar 

  • Lebouc F, Dez I, Desbrières J, Picton L, Madec P-J (2005) Different ways for grafting ester derivatives of poly (ethylene glycol) onto chitosan: related characteristics and potential properties. Polymer 46(3):639–651

    Article  Google Scholar 

  • Lee T, Loewenthal A, Strachan J, Todd B (1994) Pain during injection of propofol. Anaesthesia 49(9):817–818

    Article  Google Scholar 

  • Li X, Zhang Y, Fan Y, Zhou Y, Wang X, Fan C, Liu Y, Zhang Q (2011) Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol. Nanoscale Res Lett 6(1):1–9

    Google Scholar 

  • Liu L, Li F, Ye Fang, Guo S (2006) Regioselective grafting of poly (ethylene glycol) onto chitosan and the properties of the resulting copolymers. Macromol Biosci 6(10):855–861

    Article  Google Scholar 

  • Makuška R, Gorochovceva N (2006) Regioselective grafting of poly (ethylene glycol) onto chitosan through C-6 position of glucosamine units. Carbohydr Polym 64(2):319–327

    Article  Google Scholar 

  • Malhotra M, Kulamarva A, Sebak S, Paul A, Bhathena J, Mirzaei M, Prakash S (2009) Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev Ind Pharm 35(6):719–726

    Article  Google Scholar 

  • Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomed 6:485

    Google Scholar 

  • Miner JR, Burton JH (2007) Clinical practice advisory: emergency department procedural sedation with propofol. Ann Emerg Med 50(2):182–187

    Article  Google Scholar 

  • Ouchi T, Nishizawa H, Ohya Y (1998) Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer 39(21):5171–5175

    Article  Google Scholar 

  • Peng H, Xiong H, Li J, Chen L, Zhao Q (2010) Methoxy poly (ethylene glycol)-grafted-chitosan based microcapsules: synthesis, characterization and properties as a potential hydrophilic wall material for stabilization and controlled release of algal oil. J Food Eng 101(1):113–119

    Article  Google Scholar 

  • Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Alonso M (2006) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release 111(3):299–308

    Article  Google Scholar 

  • Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  Google Scholar 

  • Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Aiba S-I (2002) Chemical modification of chitosan. 14: 1 Synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3(5):1126–1128

    Article  Google Scholar 

  • Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y (1998) Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym 36(1):49–59

    Article  Google Scholar 

  • Sundarathiti P, Boonthom N, Chalacheewa T, Jommaroeng P, Rungsithiwan W (2007) A comparison of propofol-LCT with propofol-LCT/MCT on pain of injection. Med J Med Assoc Thail 90(12):2683

    Google Scholar 

  • Torii Y, Ikeda H, Shimojoh M, Kurita K (2009) Chemoselective protection of chitosan by dichlorophthaloylation: preparation of a key intermediate for chemical modifications. Polym Bull 62(6):749–759

    Article  Google Scholar 

  • Wachowski I, Jolly DT, Hrazdil J, Galbraith JC, Greacen M, Clanachan AS (1999) The growth of microorganisms in propofol and mixtures of propofol and lidocaine. Anesth Analg 88(1):209–212

    Google Scholar 

  • Wolf A, Weir P, Segar P, Stone J, Shield J (2001) Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 357(9256):606–607

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Iran National Science Foundation (INSF) and Amirkabir University of Technology for their support in carrying out this project. We would also like to thank Prof. A. Khademhosseini (Hravard medical school), Ms. F. Khosravi, and Dr. Ramin Omidvar in nano lab of Amirkabir University of Technology for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdouss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafabadi, A.H., Abdouss, M. & Faghihi, S. Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application. J Nanopart Res 16, 2312 (2014). https://doi.org/10.1007/s11051-014-2312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2312-7

Keywords

Navigation