Skip to main content
Log in

Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via ππ accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA–DTX–OSWNT–SLN was prepared following a microemulsion technique. The size and zeta potential of FA–DTX–OSWNT–SLN were 182.8 ± 2.8 nm and −34.59 ± 1.50 mV, respectively. TEM images indicated that FA–DTX–OSWNT–SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA–DTX–OSWNT–SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA–DTX–OSWNT–SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674. doi:10.1016/j.cbpa.2005.10.005

    Article  Google Scholar 

  • Bottini M, Rosato N, Bottini N (2011) PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules 12:3381–3393. doi:10.1021/bm201020h

    Article  Google Scholar 

  • Chakravarty P, Marches R, Zimmerman NS et al (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci USA 105:8697–8702. doi:10.1073/pnas.0803557105

    Article  Google Scholar 

  • Chen C, Xie XX, Zhou Q et al (2012) EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology 23:045104. doi:10.1088/0957-4484/23/4/045104

    Article  Google Scholar 

  • Duan J, Mansour HM, Zhang Y et al (2012) Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly (butyl cyanoacrylate) nanoparticles. Int J Pharm 426:193–201. doi:10.1016/j.ijpharm.2012.01.020

    Article  Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernández RM et al (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Trans Oncol 14:83–93. doi:10.1007/s12094-012-0766-6

    Article  Google Scholar 

  • Jeffrey LB, James MT (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952–1958. doi:10.1039/b201013p

    Article  Google Scholar 

  • Joensuu H, Kellokumpu-Lehtinen PL et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. New Engl J Med 354:809–820. doi:10.1056/NEJMoa053028

    Article  Google Scholar 

  • Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660. doi:10.1158/0008-5472.CAN-08-1468

    Article  Google Scholar 

  • Liu X, Tao H, Yang K et al (2011a) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32(1):144–151. doi:10.1016/j.biomaterials.2010.08.096

    Article  Google Scholar 

  • Liu Z, Liu D, Wang L et al (2011b) Docetaxel-loaded pluronic p123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci 12:1684–1696. doi:10.3390/ijms12031684

    Article  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129. doi:10.1021/ar7000815

    Article  Google Scholar 

  • Lucafò M, Pacor S, Fabbro C et al (2012) Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells. J Nanopart Res 14:1–13. doi:10.1007/s11051-012-0830-8

    Article  Google Scholar 

  • Magrez A, Kasas S, Salicio V et al (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125. doi:10.1021/nl060162e

    Article  Google Scholar 

  • Mosallaei N, Jaafari MR, Hanafi-Bojd MY et al (2013) Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 102:1994–2004. doi:10.1002/jps.23522

    Article  Google Scholar 

  • Müller RH, Maassen S, Schwarz C et al (1997) Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release 47:261–269

    Article  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176. doi:org/10.1016/j.canlet.2004.02.004

    Article  Google Scholar 

  • Piao L, Liu Q, Li Y et al (2009) The adsorption of l-phenylalanine on oxidized single-walled carbon nanotubes. J Nanosci Nanotechno 9:1394–1399. doi:10.1166/jnn.2009.C164

    Article  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2007) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68. doi:10.1021/ar700089b

    Article  Google Scholar 

  • Shi J, Zhang H, Wang L et al (2012) PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials 34:251–261. doi:10.1016/j.biomaterials.2012.09.039

    Article  Google Scholar 

  • Shi J, Ma R, Wang L et al (2013) The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int J Nanomed 8:2361. doi:10.2147/IJN.S45407

    Article  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  Google Scholar 

  • Wang F (2008) Quantitative determination of the functional groups on carbon nanotubes. Dissertation, Shandong University

  • Wang L, Zhang M, Zhang N et al (2011) Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int J Nanomed 6:2641–2652. doi:10.2147/IJN.S24167

    Article  Google Scholar 

  • Wang L, Shi J, Jia X et al (2013) NIR-/pH-responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharm Res 30:2757–2771. doi:10.1007/s11095-013-1095-3

    Article  Google Scholar 

  • Wilbur DS, Chyan MK, Hamlin DK et al (2004) Reagents for astatination of biomolecules: comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug Chem 15:203–223. doi:10.1021/bc034175k

    Article  Google Scholar 

  • Yang P, Sun J, Liu K et al (2008) Preparation and characteristics of docetaxel nanos-tructure lipid carriers. J Shenyang Pharm Univ 3:002

    Google Scholar 

  • Zhang J, Qian Z, Gu Y (2009) In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel. Nanotechnology 20(32):325102. doi:10.1088/0957-4484/20/32/325102

    Article  Google Scholar 

  • Zhang H, Chen C, Hou L et al (2013) Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells. J Drug Target 21(3):312–319. doi:10.3109/1061186X.2012.749880

    Article  Google Scholar 

  • Zhou F, Xing D, Ou Z et al (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14(2):021009. doi:10.1117/1.3078803

    Article  Google Scholar 

  • Zhou F, Wu S, Wu B et al (2011) Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 7(19):2727–2735. doi:10.1002/smll.201100669

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (Nos. 81273451 and 81210108003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Huang, S., Xie, Y. et al. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes. J Nanopart Res 16, 2207 (2014). https://doi.org/10.1007/s11051-013-2207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2207-z

Keywords

Navigation