Skip to main content
Log in

Silver–titanium dioxide nanocomposites as effective antimicrobial and antibiofilm agents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ag–TiO2 nanocomposites were successfully developed from colloidal suspensions containing 750 or 1,500 ppm silver nanoparticles (AgNPs) deposited on 5 % (w/v) titanium dioxide nanoparticles (TiO2NPs) by a chemical reduction approach. The nanocomposites were characterized by diffuse reflectance UV–Vis spectroscopy (DRS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS). DRS spectra showed an absorption band in visible region with maximum absorbance peaks at 452 and 444 nm attributed to AgNPs plasmon peaks, indicating the formation of small spherical or quasi-spherical Ag nanocrystals in nanocomposites. TEM and SEM analysis proved a nearly spherical morphology of particles (15–30 ± 5 nm average size in diameter). EDX analysis revealed the presence of Ti, O, and Ag in both nanocomposite powders having 1.37 or 2.34 wt% Ag content. DLS analysis yielded a bimodal particle size distribution in a narrow range (31.3 ± 0.5 or 23.4 ± 0.4 nm average particle diameter) and a good polydispersity (0.247 or 0.293 polydispersity index). The nanocomposites were screened for their in vitro antimicrobial activity against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) bacterial and fungal (Candida albicans) reference and clinical strains, in planktonic and adherent state, by qualitative and quantitative assays. The antibacterial activity increased with the increasing AgNPs content, being more intensive for Gram-positive bacteria. Both Ag–TiO2 nanocomposites exhibited a high antibiofilm activity. The obtained results recommend the use of the developed nanocomposites as antimicrobial and antibiofilm agents in practical applications without UV irradiation. The most effective agent proved to be the one with 2.34 wt% AgNPs content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Batista Gonçalves GA (2007) Synthesis and characterization of TiO2/cellulose nanocomposites. Dissertation, Universidade de Aveiro, Aveiro

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. doi:10.1021/cr0500535

    Article  Google Scholar 

  • Chifiriuc MC, Palade R, Israil AM (2011) Comparative analysis of disk diffusion and liquid medium microdillution methods for testing the antibiotic susceptibility patterns of anaerobic bacterial strains isolated from intrabdominal infections. Biointerface Res App Chem 1(6):209–220

    Google Scholar 

  • Cho WH, Kang DJ, Kim SG (2003) Intraparticle structures of composite TiO2/SiO2 nanoparticles prepared by varying precursor mixing modes in vapor phase. J Mater Sci 38(12):2619–2625. doi:10.1023/A:1024478417561

    Article  Google Scholar 

  • Chou KS, Ren CY (2000) Synthesis of nanosized silver particles by chemical reduction method. Mater Chem Phys 64(3):241–246. doi:10.1016/S0254-0584(00)00223-6

    Article  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094. doi:10.2147/IJN.S13532

    Article  Google Scholar 

  • Diebold U (2003) The surface of titanium dioxide. Surf Sci Rep 48(5–8):53–229. doi:10.1016/S0167-5729(02)00100-0

    Article  Google Scholar 

  • Dong PV, Ha CH, Binh LT, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2:9. doi:10.1186/2228-5326-2-9

    Article  Google Scholar 

  • Evanoff DD Jr, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7):1221–1231. doi:10.1002/cphc.200500113

    Article  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868. doi:10.1007/s00253-011-3213-7

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed-Nanotechnol 5(4):382–386. doi:10.1016/j.nano.2009.06.005

    Article  Google Scholar 

  • Gavriliu S, Lungu M, Gavriliu LC, Grigore F, Groza C (2009) Antimicrobial colloidal suspensions of silver-titania. Open Chem Biomed Meth J 2:77–85. doi:10.2174/1875038900902010077

    Article  Google Scholar 

  • Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8(5):1670–1684. doi:10.1016/j.actbio.2012.01.011

    Article  Google Scholar 

  • Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Morales Sanchez E, Ruiz F, Bach H, Av-Gay Y (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6(5):681–688. doi:10.1016/j.nano.2010.02.001

    Google Scholar 

  • Henglein A (1977) The reactivity of silver atoms in aqueous solutions (A γ-radiolysis study). Ber Bunsenges Phys Chem 81(6):556–561. doi:10.1002/bbpc.19770810604

    Article  Google Scholar 

  • Higa L, Schilrreff P, Perez AP, Morilla MJ, Romero EL (2013) The intervention of nanotechnology against epithelial fungal diseases. J Biomater Tissue Eng 3(1):1–19. doi:10.1166/jbt.2013.1065

    Article  Google Scholar 

  • Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110(9):4066–4072. doi:10.1021/jp0564400

    Article  Google Scholar 

  • Kaszuba M, McKnight D, Connah MT, McNeil-Watson F, Nobbmann U (2008) Measuring sub-nanometre sizes using dynamic light scattering. J Nanopart Res 10(5):823–829. doi:10.1007/s11051-007-9317-4

    Article  Google Scholar 

  • Kedziora A, Strek W, Kepinski L, Bugla-Ploskonska G, Doroszkiewicz W (2012) Synthesis and antibacterial activity of novel titanium dioxide doped with silver. J Sol-Gel Sci Technol 62(1):79–86. doi:10.1007/s10971-012-2688-8

    Article  Google Scholar 

  • Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf B 82(2):513–517. doi:10.1016/j.colsurfb.2010.10.008

    Article  Google Scholar 

  • Khanna PK, Subbarao VVVS (2003) Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater Lett 57(15):2242–2245. doi:10.1016/S0167-577X(02)01203-X

    Article  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281. doi:10.1016/S0045-6535(03)00051-1

    Article  Google Scholar 

  • Korbekandi H, Iravani S (2012) Silver nanoparticles. In: Hashim AA (ed) The delivery of nanoparticles. InTech, Rijeka, pp 3–36. doi:10.5772/34157

    Google Scholar 

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    Article  Google Scholar 

  • Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi:10.1021/cr00035a013

    Article  Google Scholar 

  • Liou JW, Chang HH (2012) Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch Immunol Ther Exp 60(4):267–275. doi:10.1007/s00005-012-0178-x

    Article  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. doi:10.1007/s11051-010-9900-y

    Article  Google Scholar 

  • Mie G (1908) Contributions to the optics of turbid media, especially colloidal metal solutions. Ann Phys 330(3):377–445. doi:10.1002/andp.19083300302

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  Google Scholar 

  • Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425. doi:10.1016/j.rser.2005.01.009

    Article  Google Scholar 

  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2007) The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl Phys B 86(3):455–460. doi:10.1007/s00340-006-2401-0

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/AEM.02218-06

    Article  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h

    Article  Google Scholar 

  • Paraje MG (2011) Antimicrobial resistance in biofilms. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 736–744

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. doi:10.1186/2228-5326-2-32

    Article  Google Scholar 

  • Ravishankar RV, Jamuna BA (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 197–209

    Google Scholar 

  • Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11(3):223–226. doi:10.1016/S0924-8579(99)00020-5

    Article  Google Scholar 

  • Rosarin FS, Mirunalini S (2011) Nobel metallic nanoparticles with novel biomedical properties. J Bioanal Biomed 3(4):085–091. doi:10.4172/1948-593X.1000049

    Article  Google Scholar 

  • Saviuc C, Grumezescu AM, Chifiriuc MC, Bleotu C, Stanciu G, Hristu R, Mihaiescu D, Lazăr V (2011) In vitro methods for the study of microbial biofilms. Biointerface Res App Chem 1(1):31–40

    Google Scholar 

  • Schinwald A, Donaldson K (2012) Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part Fibre Toxicol 9:34. doi:10.1186/1743-8977-9-34

    Article  Google Scholar 

  • Slistan-Grijalv A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E Low Dimens Syst Nanostruct 27(1–2):104–112. doi:10.1016/j.physe.2004.10.014

    Article  Google Scholar 

  • Song KS, Lee SM, Park TS, Lee BS (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26(1):153–155. doi:10.1007/s11814-009-0024-y

    Article  Google Scholar 

  • Sousa C, Illas F (1994) Ionic-covalent transition in titanium dioxides. Phys Rev B 50(19):13974–13980. doi:10.1103/PhysRevB.50.13974

    Article  Google Scholar 

  • Sunitha A, Rimal Isaac RS, Sweetly G, Sornalekshmi S, Arsula R, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5(1):39–45. doi:10.5101/nbe.v5i1.p39-45

    Google Scholar 

  • Tortora G, Funke RB, Case LC (2001) Microbiology: an introduction. Addison-Wesley Longman Inc, New York

    Google Scholar 

  • Yan X, He J, Evans DG, Zhu Y, Duan X (2004) Preparation, characterization and photocatalytic activity of TiO2 formed from a mesoporous precursor. J Porous Mater 11(3):131–139. doi:10.1023/B:JOPO.0000038008.86521.9a

    Article  Google Scholar 

  • Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:115603. doi:10.1088/0957-4484/22/11/115603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Lungu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lungu, M., Gavriliu, Ş., Enescu, E. et al. Silver–titanium dioxide nanocomposites as effective antimicrobial and antibiofilm agents. J Nanopart Res 16, 2203 (2014). https://doi.org/10.1007/s11051-013-2203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2203-3

Keywords

Navigation