Skip to main content
Log in

Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple low-cost hydrothermal method has been developed to fabricate uniformly dispersed octahedral Fe3O4 nanoparticles with tunable size. The particle size can be reduced to 20–30 nm under the effect of phosphate, meanwhile, the edetate disodium can improve the dispersivity of particles. High-resolution transmission electron microscope showed that the octahedral Fe3O4 nanoparticle was enclosed by eight (111) planes. Octahedral γ-Fe2O3 nanoparticles were obtained by reoxidizing the as-synthesized Fe3O4 nanoparticles. The microwave absorption properties of the octahedral Fe3O4 and γ-Fe2O3 nanoparticles were measured in the frequency range of 2–18 GHz. A minimum reflection loss of −28 dB was observed at 8.6 GHz for octahedral Fe3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen SY, Feng J, Guo XF, Hong JM, Ding WP (2005) One-step wet chemistry for preparation of magnetite nanorods. Mater Lett 59:985–988

    Article  CAS  Google Scholar 

  • Chen N, Mu GH, Pan XF, Gan KK, Gu MY (2007) Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Mater Sci Eng B 139:256–260

    Article  CAS  Google Scholar 

  • Chen J, Huang KL, Liu SQ (2009) Hydrothermal preparation and characterization of octadecahedron Fe3O4 film. J Alloys Compd 484:207–210

    Article  CAS  Google Scholar 

  • Chen YJ, Xiao G, Wang TS, Ouyang QY, Qi LH, Ma Y, Gao P, Zhu CL, Cao MS, Jin HB (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115:13603–13608

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, proper-ties, reactions, occurrences and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Daou TJ, Begin-Colin S, Thomas F, Derory A, Bernhardt P, Pourroy G (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19:4494–4505

    Article  CAS  Google Scholar 

  • de Faria DLA, Silva SV, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Google Scholar 

  • Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  CAS  Google Scholar 

  • Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YP (2009) Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 3:2798–2808

    Article  CAS  Google Scholar 

  • Fu L, Dravid VP, Johnson DL (2001) Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles. Appl Surf Sci 181:173–178

    Article  CAS  Google Scholar 

  • Hu CQ, Gao ZH, Yang XR (2006) Fabrication and magnetic properties of Fe3O4 octahedra. Chem Phys Lett 429:513–517

    Article  CAS  Google Scholar 

  • Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225:256–261

    Article  CAS  Google Scholar 

  • Kong J, Liu JR, Wang FL, Luan LQ, Itoh M, Machida K (2011) Electromagnetic wave absorption properties of Fe3O4 octahedral nanocrystallines in gigahertz range. Appl Phys A 105:351–354

    Article  CAS  Google Scholar 

  • Kurlyandskaya GV, Cunanan J, Bhagat SM, Aphesteguy JC, Jacoco SE (2007) Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J Phys Chem Solids 8:1527–1532

    Article  Google Scholar 

  • Li XY, Si ZJ, Lei YQ, Tang JK, Wang S, Su SQ, Song SY, Zhao LJ, Zhang HJ (2010) Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. CrystEngComm 12:2060–2063

    Article  CAS  Google Scholar 

  • Lian SY, Wang E, Gao L, Kang ZH, Wu D, Lan Y, Xu L (2004) Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid State Commun 132:375–378

    Article  CAS  Google Scholar 

  • Liu ZL, Wang X, Yao KL (2004) Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci 39:2633–2637

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Maslar JE, Hurst WS, Bowers WJ (2000) In situ Raman spectroscopic investigation of aqueous iron corrosion at elevated temperatures and pressures. J Electrochem Soc 147:2532–2542

    Article  CAS  Google Scholar 

  • Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park JG, Noh HG, Kim JY, Park JH, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44:2872–2877

    Article  CAS  Google Scholar 

  • Peng AZ, Peng XG (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353

    Article  CAS  Google Scholar 

  • Peng DF, Beysen S, Li Q, Jian JK, Sun YF, Jiwuer J (2009) Hydrothermal growth of octahedral Fe3O4 crystals. Particuology 7:35–38

    Article  CAS  Google Scholar 

  • Qi HP, Chen QW, Wang MS, Wen MH, Xiong J (2009a) Study of self-assembly of octahedral magnetite under an external magnetic field. J Phys Chem C 113:17301–17305

    Article  CAS  Google Scholar 

  • Qi HP, Ye J, Tao N, Wen MH, Chen QW (2009b) Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. J Cryst Growth 311:394–398

    Article  CAS  Google Scholar 

  • Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804

    Article  CAS  Google Scholar 

  • Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc 34:845–852

    Article  CAS  Google Scholar 

  • Varadwaj KSK, Panigrahi MK, Ghose J (2004) Effect of capping and particle size on Raman laser-induced degradation of γ-Fe2O3 nanoparticles. J Solid State Chem 177:4286–4292

    Article  CAS  Google Scholar 

  • Wan SR, Huang JS, Yan HS, Liu KL (2006) Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem 16:298–303

    Article  CAS  Google Scholar 

  • Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  • Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320:2132–2139

    Article  CAS  Google Scholar 

  • Wang D, Ma Q, Yang P (2012) Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition. J Nanosci Nanotechnol 12:6432–6438

    Article  CAS  Google Scholar 

  • Wang GQ, Chang YF, Wang LF, Liu LD, Liu C (2013) Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles. Mater Res Bull 48:1007–1012

    Article  CAS  Google Scholar 

  • Wei J, Liu JH, Li SM (2007) Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J Magn Magn Mater 312:414–417

    Article  CAS  Google Scholar 

  • Wu W, Xiao XH, Zhang SF (2010) Synthesis and magnetic properties of maghemite (γ-Fe2O3) short-nanotubes. Nanoscale Res Lett 5:1474–1479

    Article  CAS  Google Scholar 

  • Xiong Y, Ye J, Gu XY, Chen QW (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003

    Article  CAS  Google Scholar 

  • Zhang JL, Wang Y, Ji H, Wei YJ, Wu NZ, Zuo BJ, Wang QL (2005) Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. J Catal 229:114–118

    Article  CAS  Google Scholar 

  • Zhang DE, Zhang XJ, Ni XM (2007) Fabrication and characterization of Fe3O4 octahedrons via an edta-assisted route. Cryst Growth Des 7:2117–2119

    Article  CAS  Google Scholar 

  • Zhang YC, Tang JY, Hu XY (2008) Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J Alloys Compd 462:24–28

    Article  CAS  Google Scholar 

  • Zhang LH, Wu JJ, Liao HB (2009) Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun 29:4378–4380

    Article  Google Scholar 

  • Zhao LJ, Duan LF (2010) Uniform Fe3O4 octahedra with tunable edge length—synthesis by a facile polyol route and magnetic properties. Eur J Inorg Chem 36:5635–5639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Lv, B. & Xu, Y. Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties. J Nanopart Res 15, 2114 (2013). https://doi.org/10.1007/s11051-013-2114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2114-3

Keywords

Navigation