Skip to main content
Log in

Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO x /Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl2 annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl2 annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl2-annealing conditions (370 °C CdCl2 annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl2-annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V OC of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8 % efficiency. Appl Phys Lett 62:2851–2852

    Article  CAS  Google Scholar 

  • Chu TL, Chu SS, Ferekides C, Wu CQ, Britt J, Wang C (1991) 13.4% efficient thin-film CdS/CdTe solar cells. J Appl Phys 70:7608–7612

    Article  CAS  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W (2009) Solar cell efficiency tables (version 33). Prog Photovolt 17:74–85

    Google Scholar 

  • Guo Q, Qi GM, Grayson F, Yang WC, Walker BC, Stach E, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386

    Article  CAS  Google Scholar 

  • Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465

    Article  CAS  Google Scholar 

  • He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Google Scholar 

  • Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp K, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582

    Article  CAS  Google Scholar 

  • Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20 %. Prog Photovolt Res Appl 19:894–897

    Article  CAS  Google Scholar 

  • Jasieniak J, MacDonald BI, Watkins SE, Mulvaney P (2011) Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly. Nano Lett 11:2856–2864

    Article  CAS  Google Scholar 

  • Katiyar RK, Sahoo S, Gaur APS, Singh A, Morell G, Katiyar RS (2011) Studies of photovoltaic properties of nanocrystalline thin films of CdS–CdTe. J Alloy Compd 509:10003–10006

    Article  CAS  Google Scholar 

  • King RR (2008) Multijunction cells: record breakers. Nat Photonics 2:284–286

    Article  CAS  Google Scholar 

  • Lan L, Xu M, Peng J, Xu H, Li M, Luo D, Zou J, Tao H, Wang L, Yao R (2011) Influence of source and drain contacts on the properties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. J Appl Phys 110:103703

    Article  Google Scholar 

  • Lin H, Xia W, Wu HN, Tang CW (2010) CdS/CdTe solar cells with MoO x as back contact buffers. Appl Phys Lett 97:123504

    Article  Google Scholar 

  • Liu H, Tang J, Kramer I, Debnath JR, Koleilat GI, Wang X, Fisher A, Li R, Brzozowski L, Levina L, Sargent EH (2011) Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv Mater 23:3832–3837

    CAS  Google Scholar 

  • MacDonald BI, Martucci A, Rubanov S, Watkins SE, Mulvaney P, Jasieniak JJ (2012) Layer-by-layer assembly of sintered CdSe x Te1−x nanocrystal solar cells. ACS Nano 6:5995–6004

    Article  CAS  Google Scholar 

  • Moutinho HR, Al-Jassim MM, Levi DH, Dippo PC, Kazmerski LL (1998) Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J Vac Sci Technol 16:1251–1257

    Article  CAS  Google Scholar 

  • Nie W, He J, Zhao N, Ji X (2006) A controllable synthesis of multi-armed CdTe nanorods. Nanotechnology 17:1146

    Article  CAS  Google Scholar 

  • Olson JD, Rodriguez YW, Yang LD, Alers GB, Carter SA (2010) CdTe Schottky diodes from colloidal nanocrystals. Appl Phys Lett 96:242103

    Article  Google Scholar 

  • Paulson PD, Dutta V (2000) Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells. Thin Solid Films 370:299–306

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  • Sun S, Liu H, Gao Y, Qin D, Chen J (2012) Controlled synthesis of CdTe nanocrystals for high performance Schottky thin film solar cells. J Mater Chem 22:19207–19212

    Article  CAS  Google Scholar 

  • Tang J, Lemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath Cha RD, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH (2011) Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater 10:765–771

    Article  CAS  Google Scholar 

  • Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent EH (2012) Quantum junction solar cells. Nano Lett 12:4889–4894

    Article  CAS  Google Scholar 

  • Weil BD, Connor ST, Cui Y (2010) CuInS2 solar cells by air-stable ink rolling. J Am Chem Soc 132:6642–6643

    Article  CAS  Google Scholar 

  • Yu WW, Wang YA, Peng X (2003) Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:  ligand effects on monomers and nanocrystals. Chem Mater 15:4300–4308

    Article  CAS  Google Scholar 

  • Zweibel K (1999) Issues in thin film PV manufacturing cost reduction. Sol Energy Mater Sol Cells 59:1–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51073056, 50990065, 51010003, 61274062, and 11204106), National Science Foundation for Distinguished Young Scholars of China (Grant No. 51225301) and SCUT Grant (No. 2013ZZ0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghuan Qin.

Additional information

Yiyao Tian, Yijie Zhang, Yizhao Lin, and Kuo Gao have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Zhang, Y., Lin, Y. et al. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer. J Nanopart Res 15, 2053 (2013). https://doi.org/10.1007/s11051-013-2053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2053-z

Keywords

Navigation